AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Worlddrugtracker, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his PhD from ICT ,1991, Mumbai, India, in Organic chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA as ADVISOR earlier GLENMARK LS Research centre as consultant,Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Prior to joining Glenmark, he worked with major multinationals like Hoechst Marion Roussel, now sSanofi, Searle India ltd, now Rpg lifesciences, etc. he is now helping millions, has million hits on google on all organic chemistry websites. His New Drug Approvals, Green Chemistry International, Eurekamoments in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 year tenure, good knowledge of IPM, GMP, Regulatory aspects, he has several international drug patents published worldwide . He gas good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, polymorphism etc He suffered a paralytic stroke in dec 2007 and is bound to a wheelchair, this seems to have injected feul in him to help chemists around the world, he is more active than before and is pushing boundaries, he has one lakh connections on all networking sites, He makes himself available to all, contact him on +91 9323115463, amcrasto@gmail.com

New FDA Draft Guidance ‘Data Integrity and Compliance with cGMP’ published

 regulatory  Comments Off on New FDA Draft Guidance ‘Data Integrity and Compliance with cGMP’ published
Apr 292016
 

In the last years, the topic “data integrity” has become a priority for the FDA. Recently, the Agency has published the draft of a Guidance for Industry on the topic which presents the comprehensive opinion of the FDA on data integrity. Read more about the draft of the Guidance for Industry “Data Integrity and Compliance with cGMP”.

http://www.gmp-compliance.org/enews_05311_New-FDA-Draft-Guidance–Data-Integrity-and-Compliance-with-cGMP–published_15555,15527,15062,15064,Z-COVM_n.html

In recent years, the topic “data integrity” has become a priority for European and American inspectors. At the beginning of 2015, the British authority MHRA published a first paper on that topic. Also in 2015, the World Health Organisation WHO issued another significant draft document on data integrity. Recently, the US American FDA has released the draft of a Guidance for Industry entitled “Data Integrity and Compliance with cGMP”. Although the FDA describes the Guidance as a non-binding recommendation, one may assume that the document presents the current thinking of the FDA regarding the topic.

The FDA criticises the fact that more and more cGMP deficiencies with regard to data integrity have been observed during inspections. Those deficiencies have led to a number of follow-up measures like Warning Letters or import alerts.

For the FDA, the integrity of data is one of the main quality issues. In the Guidance, the corresponding reference points in parts 21 CFR 211 and 21 CFR 212 are listed in detail as well as the principles for electronic records laid down in 21 CFR Part 11.

  • § 211.68 (requiring that “backup data are exact and complete,” and “secure from 48 alteration, inadvertent erasures, or loss”)
  • § 212.110(b) (requiring that data be “stored to prevent deterioration or loss”)
  • §§ 211.100 and 211.160 (requiring that certain activities be “documented at the time 51 of performance” and that laboratory controls be “scientifically sound”)
  • § 211.180 (requiring that records be retained as “original records,” “true copies,” or 53 other “accurate reproductions of the original records”)
  • §§ 211.188, 211.194, and 212.60(g) (requiring “complete information,” “complete 55 data derived from all tests,” “complete record of all data,” and “complete records of 56 all tests performed”).

The most important topics for the FDA are presented in the quite rare but not unusual form of questions and answers. The document contains 18 questions with their respective answers.

1. Clarification of terms
– What is “data integrity”?
– What is “metadata”?
– What is an “audit trail”?
– How does FDA use the terms “static” and “dynamic” as they relate to record formats?
– How does FDA use the term “backup” in § 211.68(b)?
– What are the “systems” in “computer or related systems” in § 211.68?
2. When is it permissible to exclude CGMP data from decision making?
3. Does each workflow on our computer system need to be validated?
4. How should access to CGMP computer systems be restricted?
5. Why is FDA concerned with the use of shared login accounts for computer systems?
6. How should blank forms be controlled?
7. How often should audit trails be reviewed?
8. Who should review audit trails?
9. Can electronic copies be used as accurate reproductions of paper or electronic records?
10. Is it acceptable to retain paper printouts or static records instead of original electronic records from stand-alone computerized laboratory instruments, such as an FT-IR instrument?
11. Can electronic signatures be used instead of handwritten signatures for master production and control records?
12. When does electronic data become a CGMP record?
13. Why has the FDA cited use of actual samples during “system suitability” or test, prep, or equilibration runs in warning letters?
14. Is it acceptable to only save the final results from reprocessed laboratory chromatography?
15. Can an internal tip regarding a quality issue, such as potential data falsification, be handled informally outside of the documented CGMP quality system?
16. Should personnel be trained in detecting data integrity issues as part of a routine CGMP training program?
17. Is the FDA investigator allowed to look at my electronic records?
18. How does FDA recommend data integrity problems identified during inspections, in warning letters, or in other regulatory actions be addressed?

Source: FDA Draft Guidance for Industry “Data Integrity and Compliance with cGMP”

 

 

 

\//////////New FDA Draft Guidance, Data Integrity, Compliance, cGMP,  published

Share

Five new General Chapters in the European Pharmacopoeia on Genotoxic Impurities in Pharmaceutical APIs

 regulatory  Comments Off on Five new General Chapters in the European Pharmacopoeia on Genotoxic Impurities in Pharmaceutical APIs
Apr 292016
 

During the manufacture of APIs as sulfonate salts, esters of sulfonic acid may develop in undesired chemical side reactions. Recently, five new General Monographs have been included in the European Pharmacopoeia which describe how to cope with these impurities. Read more about these genotoxic impurities and the possibility to control them thanks to risk assessments.

http://www.gmp-compliance.org/enews_05313_Five-new-General-Chapters-in-the-European-Pharmacopoeia-on-Genotoxic-Impurities-in-Pharmaceutical-APIs_15499,S-AYL_n.html

Sulfonic acids are often used for the manufacture of pharmaceutical APIs. They serve as counterions in crystallisation processes, as protective groups or acid catalysts in API syntheses. Here, if short-chain alcohols such as methanol, ethanol or isopropanol are present, the formation of esters of these sulfonic acids can occur, which may have a genotoxic potential (alkylation of DNA).

The Mesilate Working Party which has been appointed in 2008 by the European Pharmacopoeia Commission has elaborated five General Chapters on different sulfonates which have been published in the European Pharmacopoeia Supplement 8.7 that came into force on 1 April 2016. The General Chapters are as follows:

  • 2.5.37 Methyl, ethyl and isopropyl methanesulfonate in methanesulfonic acid
  • 2.5.38 Methyl, ethyl and isopropyl methanesulfonate in active substances
  • 2.5.39 Methanesulfonyl chloride in methanesulfonic acid
  • 2.5.40 Methyl, ethyl and isopropyl toluenesulfonate in active substances
  • 2.5.41 Methyl, ethyl and isopropyl benzenesulfonate in active substances

As reported in a press release from the EDQM dated 25 February 2016 the completion of Chapter 2.5.41 marks the end of the Mesilate Working Party, as decided by the Ph. Eur. Commission. Simultaneously, the Commission had also decided to revise  the section “Production” in APIs-Sulfonates monographs and replace it by an additional standard text according to which the principles of risk management have to be used in the manufacture of APIs with regard to the genotoxic impurities. The text is as follows:

“It is considered that [XXX esters] are genotoxic and are potential impurities in [name of the API]. The manufacturing process should be developed taking into consideration the principles of quality risk management, together with considerations of the quality of starting materials, process capability and validation. The general method [2.5.XX] is available to assist manufacturers.”

Basically, the General Chapters of the European Pharmacopoeia will only be binding when they are referred to in a monograph; the only exception is when the reference made has only a recommendation character. This applies to all these five General Chapters. The purpose of the new text segment in the “Production” sections is to alert the applicant of a marketing authorisation of the risk related to such sulfonates impurities. He / she is not obliged to perform the analytical testing described in the general monographs; it is rather sufficient  to strongly justify the absence of these impurities by means of a risk assessment in the application. The ultimate decision whether this justification is suffiicient lies with the assessor of the competent authority.

 

/////Five new General Chapters, European Pharmacopoeia, Genotoxic Impurities, Pharmaceutical APIs

Share

FDA releases draft guidance on the use of comparability protocols for post approval changes

 regulatory  Comments Off on FDA releases draft guidance on the use of comparability protocols for post approval changes
Apr 292016
 

 

 

The US FDA released a draft guidance for industry “Comparability Protocols for Human Drugs and Biologics: Chemistry, Manufacturing, and Controls Information”. The guidance replaces the draft guidance published in February 2003. It provides recommendations on implementing postapproval changes through the use of comparability protocols (CPs). Read more about FDA´s draft guidance for industry “Comparability Protocols for Human Drugs and Biologics”.

On April 19, 2016, the US Food & Drug Administration (FDA) released a draft guidance for industry “Comparability Protocols for Human Drugs and Biologics: Chemistry, Manufacturing, and Controls Information”. Comments and suggestions regarding the draft guideline should be submitted within 60 days of publication.

The guidance replaces the draft guidance published in February 2003. It provides recommendations on implementing postapproval changes through the use of comparability protocols (CPs). A CP is a comprehensive, prospectively written plan for assessing the effect of proposed CMC postapproval changes on the identity, strength, quality, purity, and potency of a drug product or a biological product. Using a CP in an original application or prior approval supplement (PAS) will, in many cases, facilitate the subsequent implementation and reporting of CMC changes. This could result in moving a product into distribution or facilitating a proactive approach to reinforcing the drug supply chain sooner than without a submitted protocol.

The guidance emphasizes that it is intended to establish a framework to promote continuous improvement in the manufacturing of quality products by encouriging applicants to employ tools of  ICH Q8 to Q11:

  • Effective use of knowledge and understanding of the product and manufacturing process;
  • A robust control strategy;
  • Risk management activities over a product´s life cycle;
  • An effective pharmaceutical quality system.

An FDA approved submission containing a CP provides an applicant with an agreed-upon plan to implement the proposed change(s), and in many cases, justification to report the implementation of the proposed change(s) in a reduced reporting category.

FDAs recommendations for the CP content: The CP submission should provide a comprehensive, detailed plan for the implementation of proposed changes and should include the information described below:

  • Summary;
  • Description of and Rationale for the Proposed Changes;
  • Supporting Information and Analysis (based on knowledge and risk assessments, information from development);
  • Comparability Protocol for the Proposed Change(s) – the CP should describe the specific tests and studies to be performed, including analytical procedures to be used and criteria to be achieved for the expected results. The level of detail that should be provided will depend on the complexity of the change and the specific risks associated with the change to product quality;
  • Proposed Reduced reporting category (i.e., an annual report, CBE, or CBE-30);
  • Other Information.

Additionally, the draft guidance provides a “Questions and Answers” section on CPs in the Appendix, which covers general questions and questions regarding formulation, manufacturing site and process, specification (including analytical methods), packaging, and process analytical technology (PAT) changes.

CPs together with “established conditions” may be effective tools for the overall product life cycle management. They can also facilitate the management of post-approval CMC changes in a more predictable and efficient manner, as it is the intention of the planned ICH Q12 Guideline “Lifecycle Management”. Steps 1 and 2 a/b of ICH Q12 are expected for June 2017.

For more information please visit the ICH website and see the FDA draft guidance for industry “Comparability Protocols for Human Drugs and Biologics: Chemistry, Manufacturing, and Controls Information“.

///////draft guidance for industry, Comparability Protocols for Human Drugs and Biologics, Chemistry, Manufacturing, Controls Information, fda

Share

Lurasidone hydrochloride, Jubilant Generics Ltd, WO 2016059649, New patent

 PATENTS  Comments Off on Lurasidone hydrochloride, Jubilant Generics Ltd, WO 2016059649, New patent
Apr 282016
 
Lurasidone
Lurasidone.svg
Ball-and-stick model of the lurasidone molecule

 

 

Lurasidone hydrochloride, Jubilant Life Sciences Ltd, WO 2016059649, New patent

An improved process for the preparation of lurasidone hydrochloride

Jubilant Life Sciences Ltd

WO 2016059649

JUBILANT GENERICS LIMITED (FORMERLY JUBILANT LIFE SCIENCES DIVISION) [IN/IN]; Plot 1A, Sector 16 A, NOIDA Uttar Pradesh 201301 (IN)

MISHRA, Vaibhav; (IN).
DUBEY, Shailendr; (IN).
SINGH, Kumber; (IN).
CHOUDHARY, Alka Srivastava; (IN).
VIR, Dharam; (IN)

 

Disclosed herein is an improved process for the preparation of Lurasidone and its pharmaceutically acceptable salts via novel intermediate and use thereof for the preparation of an antipsychotic agent useful for the treatment of schizophrenia and bipolar disorder. Further, present invention provides a cost effective and eco-friendly process for producing Lurasidone hydrochloride of formula (I) substantially free of residual solvent(s) at industrial scale.

Improved process for preparing lurasidone or its hydrochloride, substantially free of residual solvent, useful for treating schizopherenia and bipolar disorder. Also claims novel intermediate of lurasidone eg ((R,R)-cyclohexane-1,2-diyl)bis((1H-imidazol-1-yl)methanone) and its preparation method.

In April 2016, Newport Premium™ reported that Jubilant Life Sciences was capable of producing commercial quantities of lurasidone and lists the drug as a molecule available under research and development on the company’s website.

This is  the first patenting to be seen from Jubilant Life Sciences that focuses on lurasidone – it having been developed and launched by Sumitomo Dainippon Pharma and EU licensee Takeda, for treating schizophrenia.

 

May 2, 2014

Neeraj Agrawal: Took charge of API business for Jubilant Life Sciences at the age of 31

Position: CEO Generics, Jubilant Life Sciences

Education: IIIM-C, MBA, 1998; IIT, Bombay, Electrical Engg., 1995.

Previous Jobs: Associate-Business Strategy, Operations Improvement, McKinsey & Co.

Claim to Fame: Took charge of the API business for Jubilant when he was just 31-years-old

Management mantra: It revolves around trust, freedom and teams. I like my team to think and act like an entrepreneur – assess business risks and rewards suitably and then take decisions.

Lurasidone and its pharmaceutically acceptable salts like lurasidone hydrochloride is chemically, (3a ?,45,7 ?,7a5)-2-{ (1 ?,2 ?)-2-[4-(l,2-benzisothiazol-3-yl)piperazin-lyl-methyl] cyclohexylmethyl }hexahydro-4,7-methano-2H-isoindole- 1 ,3 -dione hydrochloride and has the structure represented by the Formula (I):

Formula-I

Lurasidone hydrochloride is marketed in the United States under the trade name Latuda®. Lurasidone and its pharmaceutically acceptable salts as well as process for their preparation was first disclosed in US patent no. 5,532,372. The patent discloses the preparation of lurasidone hydrochloride using racemic trans 1,2-cyclohexane dicarboxylic acid. Racemic trans 1,2-cyclohexane dicarboxylic acid on reduction with lithium aluminium hydride in THF at reflux temperature forms l,2-bis(hydroxymethyl)cyclohexane which is converted into racemic iran5-l,2-bis(methanesulfonyloxymethyl)cyclohexane by reaction with methane sulfonyl halide. l-(l,2-benzisothiazol-3-yl)piperazine on reaction with trans-l, 2-b (methanesulfonyloxymethyl)cyclohexane in the presence of sodium carbonate and acetonitrile forms iran5-3a,7a-octahydroisoindolium-2-spiro- -[4′-(l,2-benzisothiazol-3-yl)]piperazine methanesulfonate which on reaction with bicyclo[2.2.1]heptane-2-exo-3-exo-dicarboximide in the presence of potassium carbonate, dibenzo-18-crown-6-ether and xylene on refluxing forms racemic lurasidone free base. The compound is obtained by column chromatography and then treated the resulting lurasidone free base with IPA.HCl in acetone to obtain racemic lurasidone hydrochloride. Resolution of racemic lurasidone hydrochloride is carried out using tartaric acid as resolving agent. The process involves use of lithium aluminium hydride which is highly pyrophoric reagent and is not to utilize the same on commercial scale due to its handling problems associated with its reactivity. Also, the use of the column chromatography for purification is not viable on commercial scale. Further the process involves the usage of dibenzo-18-crown-6-ether as a phase transfer catalyst which is costly material and in turn increases the cost of production. Carrying out the resolution in the last stages is difficult due to the presence of six chiral centres in lurasidone and is also not suitable for an industrial scale preparation as it affects the overall yield and cost of the manufacturing process.

Chinese patent application no. CN102731512 discloses a process for preparation of lurasidone which comprises reaction of racemic irans-l,2-bis(methanesulfonyloxymethyl) cyclohexane and l-(l,2-benzisothiazol-3-yl)piperazine in toluene in the presence of sodium carbonate or potassium carbonate having particle size less than 200 micron and tetrabutyl ammonium bromide to give the intermediate /rans-3a,7a-octahydroisoindolium-2-spiro- -[4′-(l,2-benzisothiazol-3-yl)]piperazinemethanesulfonate which on reaction with bicyclo[2.2.1]heptane-2-exo-3-exo-dicarboximide in toluene using potassium carbonate having particle size less than 200 micron forms racemic lurasidone free base. The racemic free base is converted into racemic hydrochloride salt using acetone and cone, hydrochloric acid. Racemic lurasidone hydrochloride is resolved by following the method disclosed in US patent no. 5,532,372. The process involves resolution of product in the last stage which is not commercially viable as it affects the overall yield and cost of the manufacturing process.

Japanese patent no. JP4219696 discloses the resolution of trans 1,2-cycloheaxne dicarboxylic acid using (lS,2R)-(+)-norephedrine or (lR,2S)-(-)norephedrine to provide (R,R)-trans 1 ,2-cyclohexanedicarboxylic acid. The (R,R)-iran,sl,2-cyclohexane dicarboxylic acid obtained was esterified with ethanol and the obtained ester compound was reduced with vitride to provide (R,R)-l,2-bis(hydroxymethyl)cyclohexane followed by treatment with methane sulfonyl chloride to form (R,R)-1,2-bis(methanesulfonyloxymethyl)cyclohexane. The process requires large quantity of reducing agent viz., for reducing one lg of compound about 5g of reducing agent is required which is not conducive for industrial production.

Chinese patent application no. CN 102952001 discloses a process for the preparation of (lR,2R)cyclohexane-l,2-dimethanol by the reduction of (lR,2R)cyclohexane-l,2-

dicarboxylic acid using sodium borohydride or potassium borohydride and boron triflouoride diethyl ether in THF or diethyl ether as solvent. Boron triflouoride diethyl ether is used in large quantity and quite expensive which makes the process commercially unviable.

International publications no. WO 2012/131606 and WO 2014/037886 disclose a process for preparation of lurasidone which involves separating the racemic transl,2-cyclohexane dicarboxylic acid into its (R,R) trans and (S,S) trans isomers and then using the desired trans (R,R) isomer for the preparation of lurasidone hydrochloride using the chemistry disclosed in US patent no. 5,532,372 for preparation of racemic lurasidone hydrochloride. In these publications diisobutyl aluminium hydride (DIBAL) is used as the reducing agent for the preparation of (1R,2R) cyclohexane 1,2-dimethanol from (1R,2R) cyclohexane 1,2-dicarboxylic acid which is quite expensive. Further the process involves the usage of dibenzo-18-crown-6-ether as a phase transfer catalyst which is costly material and in turn increases the cost of production.

Some of the prior art processes disclose the process for the preparation of lurasidone hydrochloride from l,2-(lR,2R)-bis-(methanesulfonyloxymethyl)cyclohexane using different solvents and bases.

US patent no. 8,853,395 discloses a process for the preparation of lurasidone in which condensation of iran5-l,2-bis(methanesulfonyloxymethyl)cyclohexane with 1-(1,2-benz isothiazol-3-yl)piperazine and condensation of /rans-3a,7a-octahydroisoindolium-2-spiro- -[4′-(l,2-benzisothiazol-3-yl)]piperazine methanesulfonate with bicyclo[2.2.1] heptane-2-exo-3-exo-dicarboximide is carried out using organic bases with a ρ¾ higher than 10 such as l,4-diazabicycloundec-7-ene (DBU), l,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diaza bicyclo[2.2.2] -octane (DABCO). These organic bases are comparatively expensive.

Indian patent application no. IN 2306/MUM/2014 and Chinese patent applications no. CN 102863437 and CN 103864774 disclose the use of dimethyl formamide (DMF), dimethyl sulphoxide (DMSO), dimethyl acetamide (DMA) and N-methyl pyrrolidine (NMP) for the condensation of iran5-3a,7a-octahydroisoindolium-2-spiro- -[4′-(l,2-benzisothiazol-3-yl)] piperazine methanesulfonate with bicyclo[2.2.1] heptane-2-exo-3-exo-dicarboximide to form lurasidone. These solvents have high boiling point so not preferred at commercial scale.

Some of the prior art processes are related to reduction of impurities or quality improvement of lurasidone hydrochloride.

International publication no. WO2011/136383 discloses a process for the preparation of lurasidone hydrochloride in which amount of by products are reduced by increasing the quantity of l-(l,2-benzisothiazol-3-yl)piperazine instead of sodium carbonate or potassium carbonate as base in the reaction mixture. Increasing the amount of l-(l,2-benzisothiazol-3-yl)piperazine causes an increase in cost of production and removal of excess compound makes the process less commercially viable.

International publication no. WO2011/136384 discloses a process for the preparation of lurasidone hydrochloride in which amount of by products are reduced by using dibasic potassium phosphate with a small amount of water as a base instead of sodium carbonate. Use of dibasic potassium phosphate as a base causes an increase in cost of production as dibasic potassium phosphate is expensive.

International publication no. WO2013/014665 discloses various processes for the preparation of lurasidone hydrochloride. In general the process is shown below:

Formula-(I)

In this process iran5-(lR,2R)-2-(aminomethyl)cyclohexyl)methanol of Formula (B) is first reacted with bicyclo[2.2.1]heptane-2-exo-3-exo-dicarboximide of Formula (A) to form (3aR,4S,7R,7aS)-2-(((lR,2R)-2-(hydroxymethyl)cyclohexyl)methyl)hexahydro-lH-4,7-methanoisoindole-l,3(2H)-dione of Formula (C) which on reaction with methane sulphonyl chloride followed by reaction with l-(l,2-benzisothiazol-3-yl)piperazine of Formula (D) forms lurasidone free base which was converted into lurasidone hydrochloride using acetone and cone, hydrochloric acid.

Some of the prior art processes disclose various combinations of hydrogen chloride and solvent for the preparation of lurasidone hydrochloride from lurasidone free base.

US 7,605,260 discloses use of acetone and aqueous HC1 having strength 1.8-14.4 % for preparing lurasidone hydrochloride. The yield of lurasidone hydrochloride is relatively low (85%) by this method. If the acid concentration during the salt formation is more than 5.0% then acetone quantity as the residual solvent in the reaction product is found to be greater than 0.5% in our hands which is above the ICH limits. If acid concentration during the salt formation is less than 1.8%, then yield is reduced drastically to 65%. Therefore, this method has limitations on the large-scale industrial production.

Chinese patent application no. CN102746289A discloses the process for the preparation of lurasidone hydrochloride by adding a mixture of acetone and aqueous HC1 to a solution of lurasidone free base in acetone. On reproducing this process in laboratory, it was observed that the XRPD of the product obtained does not match with XRPD of lurasidone hydrochloride.

Indian patent application IN 777/MUM/2013 discloses use of IPA, water and 35% Aqueous HC1 for the preparation of lurasidone hydrochloride. The IPA content in the product was found to be more than 5000ppm.

The methods described in the prior art are not suitable for large scale commercial production as the residual solvent is out of the ICH limits and thus the product obtained can’t be used as a drug. In order to keep the residual solvent(s) within ICH limits, repeated crystallization/purification are required which results in reduced yield and make the process quite expensive.

The prior art discloses various processes for the preparation of lurasidone hydrochloride and its intermediates. However, there still remains a need for alternative process for the preparation of lurasidone and its pharmaceutically acceptable salts substantially free of residual solvent(s) which can be used as a drug.

According to another embodiment of the present invention, novel process for the preparation of the compound of Formula (III), their isomers and pharmaceutically acceptable salts thereof, comprises condensing 1,2-cyclohexane dicarboxylic acid of Formula (II), their isomers with carbonyl diimidazole, optionally in a solvent.

(IV)

Formula (III)

NaBH4 RT /H20

Formula (VII)

 

Scheme-1:

Example-1

Synthesis of trans(R,R)-l,2-cyclo exane dicarboxylic acid

A round bottom flask was charged with methanol (500 mL), IPA (500 mL) and trans (racemic)-l,2-cyclohexane dicarboxylic acid (100 g). In this reaction mass (R)-l-phenylethyl amine (74 mL) was added over a period of 30 minutes and stirred for 2-3 hrs at 30-40 °C. The solid obtained was filtered, washed with methanol and IPA solution (50+50 mL) and dried under reduced pressure to obtain crude salt of iran5(R,R)-l,2-cyclohexane dicarboxylic acid. The obtained salt was stirred in a solution of methanol (500 mL) and IPA (500 mL) at 65-70 °C for 2-3 hours, cooled to room temperature and filtered. The solid was washed with methanol and IPA solution (50+50 mL) and dried under reduced pressure. The solid thus obtained was dissolved in about 2N hydrochloric acid and extracted two times with ethyl acetate (1000 mL+200 mL). Organic layers were combined and washed with brine solution (100 mL). Ethyl acetate was distilled off under vacuum at 50-55 °C and cyclohexane was added to the residue. The solid separated out was filtered and washed with cyclohexane and dried under vacuum at 45-50 °C for 8-10 hours. Yield = 29.4 g

Example-2

Synthesis of ((R,R)-cyclohexane-L2-diyl)bis((lH-imidazol-l-yl)methanone)

To a solution of iran5(R,R)-l,2-cyclohexane dicarboxylic acid (25.0 g) in THF (250 mL), carbonyl diimidazole (60 g) is added and stirred for one hour at 25-30 °C . To the said solution of (R,R)2-(((lH-imidazole-lcarbonyl)oxy)carbonyl)cyclohexanecarboxylic acetic anhydride lH-imidazole (25.0 g) in THF (250 mL) is stirred for one hour at 45-50 °C. The compound obtained is isolated and is characterized by mass and NMR.

[m z = 272.75; 1H-NMR: 8.24 (s, 2H), 7.72 (d, 2H); 7.50 (d, 2H), 3.5 (m, 2H), 2.26-1.50 (m, 8H)]

Example-3

Synthesis of tra»,s(R,R)-l,2- bis(hydroxymethyl)cyclohexane

To a solution of ((R,R)-cyclohexane-l,2-diyl)bis((lH-imidazol-l-yl)methanone) (25 g) in THF (250 mL), sodium borohydride (22.0 g) followed by water (44.0 mL) are added and stirred for one hour. To this reaction mass, 10% solution of acetic acid (500 mL) and dichloromethane (500 mL) are added, stirred and layers separated. The organic layer is washed with 10% sodium bicarbonate solution followed by water. The dichloromethane is distilled off from organic layer under vacuum to give an oily mass. To the oily mass

dichloromethane (100 mL), water (100 mL) and 12.5mL cone, hydrochloric acid (35%) are added, stirred and layers obtained are separated. The dichloromethane is distilled off completely from organic layer at 40 °C to obtain oily mass (15.5 g).

Example-4

One pot process for synthesis of trans(R,R)-l,2- bis(hydroxymethyl)cyclohexane from trans(R,R)-l,2-cyclo exane dicarboxylic acid

To a solution of iran5(R,R)-l,2-cyclohexane dicarboxylic acid (25.0 g) in THF (250 mL), carbonyl diimidazole (60 g) was added and stirred for one hour at 25-30 °C. To the intermediate obtained sodium borohydride (22.0 g) and water (44.0 mL) were added and stirred for one hour. To this reaction mass, 10% solution of acetic acid (500 mL) and dichloromethane (500 mL) were added, stirred and layers separated. The aqueous layer was washed with dichloromethane (250 mL). The organic layer was washed with 10% sodium bicarbonate solution followed by water. The dichloromethane is distilled off from organic layer under vacuum to give an oily mass. To the oily mass dichloromethane (100 mL), water (100 mL) and 12.5mL cone, hydrochloric acid (35%) were added, stirred and layers obtained were separated. The dichloromethane was distilled off completely at 40 °C to obtain oily mass (15.5 g).

Example-5

Synthesis of m¾ns(R,R)- 2-bis(methanesulfonylmethyl) cyclohexane

To a suspension of irafts(R,R)-l,2-bis(hydroxymethyl)cyclohexane (15.0g) in dichloro methane (300 mL), triethyl amine (43.7 mL) followed by methane sulphonyl chloride (17.8 mL) were added over a period of 30-45 minutes. Reaction mass was stirred for 2-3 hrs. Reaction was monitored by HPLC (RI detector). After the completion of reaction, water was added, stirred and layers separated. The organic layer was washed with 10% sodium bicarbonate solution (150 mL) followed by water (150 mL). The dichloromethane was distilled off from organic layer under vacuum at 40-55 °C to give an oily mass. Methanol (30 mL) was added to the oily mass and strip off under vacuum at 40°C, added methanol (150 mL) and stirred for 1 h at 10-15°C and the solid obtained was filtered, washed with methanol (15 mL) and dried under vacuum to get the product (15.8g).

Example-6

Synthesis of ?ran (R,R)-3aJ(¾-octahvdroisoindolium-2-spiro- -r4-(L2-benzoisothiazole-3-yl)l piperazine methanesulfonate:

To a suspension of iran5(R,R)-l,2-bis(methanesulfonylmethyl)cyclohexane (15 g) in acetonitrile (150 mL) l-(l,2-benzisothiazol-3-yl)piperazine (10.95g) and sodium carbonate (7.8 g) were added, heated and stirred for 20 hrs at reflux temperature. Reaction was monitored by HPLC. After the completion of reaction, mass was cooled to 40-45 °C, filtered and washed with acetonitrile (20 mL). The acetonitrile was distilled off under vacuum at 45-50 °C. To the residue acetone (100 mL) was added, stirred for 1 hour, filtered, washed with acetone (10 mL), dried at 50-55°C for 6-8 hours to get the product (12.5 g).

Example-7

Synthesis of Lurasidone

To a suspension of iran5(R,R)-3<3,7(3-octahydroisoindolium-2-spiro- -[4-(l,2-benzo isothiazole-3-yl)]piperazinemethanesulfonate (10 g) in toluene (150 mL), bicycle[2.2.1] heptane-2-exo-3-exo-dicarboximide (5.9 g) and potassium carbonate (4.8 g) were added, heated to 110° C and stirred for 8-10 hours. Reaction was monitored by HPLC. After the completion of reaction, reaction mass was cooled to 20-30 °C, filtered and washed with toluene (10 mL). The toluene was distilled off at 55-60°C. To the residue IPA (100 mL) was added and stirred for 1-2 hours at room temperature. Lurasidone free base obtained was filtered and washed with IPA (10 mL). The solid was suck dried for 30 minutes to obtain lurasidone.

Example-8

Synthesis of Lurasidone hydrochloride

To lurasidone base (5g), acetone (75mL) and water (10 mL) were added. The mixture was heated to 55-60°C followed by the addition of IPA.HCl (10%) (lOmL) and stirred for 1-2 hours, reflux temperature. The clear solution obtained was stirred for 30 min and then 5ml IPA.HCl (10%) was added. The reaction mixture was stirred at reflux temperature for 30 min, cooled and stirred for 60 min. The solid obtained was filtered and washed with acetone (5ml) and dried under vacuum at 60°C for 8 hours.

Acetone: 542 ppm; IPA= 38ppm; Yield=93%

Example-9

Synthesis of Lurasidone hydrochloride

To lurasidone base (5g), acetone (75mL) and water (5 mL) were added. The mixture was heated to 55-60°C followed by the addition of IPA.HCl (10%) (5mL) and stirred for about 1-2 hours. The reaction mixture was stirred for 30 min. at 55-60°C, cooled and stirred for 60 min. The solid obtained was filtered and washed with acetone (5ml) and dried under vacuum at 70-80°C for 8 hours.

Map of Jubilant Generics Limited

Jubilant Generics Limited 

Pharmaceutical Company
Address: 18, 56, 57 and 58, KIADB Industrial Area, Nanjangud, Mysuru, Karnataka 571302
STR1
STR1

 

Chairman's Message

Chairman & Managing Director
Jubilant Bhartia Group
  Shyam, together with his brother Hari, is founder of Jubilant Bhartia Group (www.jubilantbhartia.com) headquartered in New Delhi, India. The Jubilant Bhartia Group, with 30,000 employees, has a strong presence in diverse sectors like Pharmaceuticals and Life Sciences, Oil and Gas (exploration and production), Agri products, Performance Polymers, Retail, Food and Consulting in Aerospace and Oilfield Services. Jubilant Bhartia Group has four flagships Companies- Jubilant Life Sciences Limited, Jubilant FoodWorks Limited and Jubilant Industries Limited, listed on Indian Stock Exchange and Jubilant Energy NV, listed at AIM market of London Exchange.Shyam, holds a bachelors’ degree in commerce from St. Xavier’s College, Calcutta University, and is a qualified cost and works accountant & a fellow member of the Institute of Cost and Works Accountants of India (ICWAI).Shyam has been associated with various institutions and has served as Member of Board of Governors, Indian Institute of Technology (IIT), Mumbai, and Indian Institute of Management (IIM), Ahmedabad. Shyam has also served as a Member of the Executive Committee of Federation of Indian Chamber of Commerce & Industry (FICCI) & Confederation of Indian Industry (CII) and was also a member of Task Force on Chemicals appointed by the Government of IndiaShyam’s immense contributions have been recognized by various awards. CHEMEXCIL has conferred Lifetime Achievement Award 2010-11 to him. He, along with his brother, was felicitated with the Entrepreneur of the Year Award at the prestigious AIMA Managing India Awards 2013, presented by the President of India. In 2010, the duo also shared the much-covetedErnst & Young Entrepreneur of the Year Award for Life Sciences & Consumer Products category.Shyam serves on the Board of several Public and Private and Foreign companies likes of Chambal Fertilizers and Chemicals Ltd, Putney Inc., CFCL Technologies Limited (Cayman Islands), Tower Promoters, BT Telecom India Pvt Ltd., American Orient Capital Partners India Pvt Ltd, IMACID, Morocco, Safe Food Corporation, etc. He was also a Director on the Board of Air India.Shyam is a regular participant at the World Economic Forum Annual Meeting in Davos and a member of the Chemical Governors Council of the World Economic Forum.Shyam is married to Shobhana, Former Member of Parliament & Chairperson, The Hindustan Times Media Ltd. They have two sons- Priyavrat and Shamit.

ISO Certification

ISO 9001:2008, 14001:2004 & OHSAS 18001:2007 certified

Code of Conduct

Code Of Conduct for Directors and Senior ManagementThis Code of Conduct highlights the standards of conduct expected from the Company’s Directors and Senior Management so as to align these with the Company’s Vision, Promise and Values.Jubilant Life Sciences Ltd. (Jubilant) has a well formulated Vision which drives the business and has the promise of Caring, Sharing, Growing to all the stakeholders–We will, with utmost care for the environment, continue to enhance value for our customers by providing innovative products and economically efficient solutions and for our shareholders through sales growth, cost effectiveness and wise investment of resources.

Director’s Desk

Director's Desk

Co-Chairman & Managing Director
Jubilant Bhartia Group

Hari, together with his brother Shyam, is co-founder of Jubilant Bhartia Group (www.jubilantbhartia.com) headquartered in New Delhi, India.The Jubilant Bhartia Group, with 30,000 employees, has a strong presence in diverse sectors like Pharmaceuticals and Life Sciences, Oil and Gas (exploration and production), Agri products, Performance Polymers, Retail, Food and Consulting in Aerospace and Oilfield Services. Jubilant Bhartia Group has four flagships Companies- Jubilant Life Sciences Limited, Jubilant FoodWorksLimited and Jubilant Industries Limited, listed on Indian Stock Exchange and Jubilant Energy NV, listed at AIM market of London Exchange.A Chemical Engineering Graduate from the prestigious Indian Institute of Technology (IIT), Delhi, Hari was conferred the Distinguished Alumni award by his alma mater in 2000. He has been associated in various capacities with the IIT system and with the Ministry of Human Resource Development, Government of India.Hari is a past President of the Confederation of Indian Industry (CII) & a member of several educational, scientific and technological programmes of the Government of India. He is currently the Chairman of the Board of Governors of the Indian Institute of Management (IIM), Raipur and Member of the International Advisory Board of McGill University, Canada.Hari is the Co-Chairman of India-Canada CEO’s Forum appointed by the Prime Minister of India. He is also a member of CEO’s Forum for India-USA, India-France and India-Sri Lanka and Joint Task Force for India-Myanmar & India-UAE. He is a regular participant at the World Economic Forum Annual Meeting in Davos and is a member of the World Economic Forum’s International Business Council and the Health Governors.Hari’s immense contributions have been recognized by various awards. He, along with his brother, was felicitated with the Entrepreneur of the Year Award at the prestigious AIMA Managing India Awards 2013, presented by the President of India. In 2010, the duo also shared the much-coveted Ernst & Young Entrepreneur of the Year Award for Life Sciences & Consumer Products category.Hari serves on the board of several public and private companies like TV 18 Broadcast Ltd., Shriram Pistons & Rings Ltd., Export Credit Guarantee Corporation of India Ltd., BT Telecom India Pvt. Ltd & India Brand Equity Foundation.Hari is married to Kavita, a leading Fashion Designer and Retailer. They have a daughter, Aashti and a son, Arjun.

Executive Leadership Team


  • Shyam S Bhartia

    Chairman


  • Hari S Bhartia

    Co-Chairman & Managing Director


  • Shyamsundar Bang

    Executive Director –Manufacturing & Supply Chain


  • R Sankaraiah

    Executive Director – Finance


  • Pramod Yadav

    Co-CEO
    Life Science Ingredients


  • Rajesh Srivastava

    Co-CEO
    Life Science Ingredients


  • G. P. Singh

    Fine Chemicals and CRAMS
    CEO – Jubilant Pharma


  • Chandan Singh

    President – Life Science Chemicals


  • Martyn Coombs

    President – Jubilant DraxImage


  • Bryan Downey

    President – Allergy Business


  • T. S. Parmar

    President – India Branded Pharmaceuticals


  • Dr. Ashutosh Agarwal

    Chief Scientific Officer –Chemicals and Life Science Ingredients


  • Ajay Khanna

    Chief – Strategic & Public Affairs

///////Lurasidone hydrochloride, Jubilant Life Sciences Ltd, WO 2016059649, New patent

Share

New Patent, Tedizolid phosphate, Suzhou MiracPharma Technology Co Ltd, Zheren Pharmaceutical Nanjing Co Ltd, WO 2016058467

 PATENTS  Comments Off on New Patent, Tedizolid phosphate, Suzhou MiracPharma Technology Co Ltd, Zheren Pharmaceutical Nanjing Co Ltd, WO 2016058467
Apr 282016
 

Tedizolid phosphate

Suzhou MiracPharma Technology Co Ltd; Zheren Pharmaceutical Nanjing Co Ltd

WO-2016058467   click for patent

SUZHOU MIRACPHARMA TECHNOLOGY CO., LTD [CN/CN]; Room 1305, Building 1 Lianfeng Commercial Plaza, Industrial District Suzhou, Jiangsu 215000 (CN).
ZHEREN PHARMACEUTICAL NANJING CO., LTD [CN/CN]; Qiaolin Industry Park 32-71, Pukou District Nanjing, Jiangsu 211806 (CN)

 

 

 

 

Disclosed is a method for preparing tedizolid phosphate (I), and the preparation step thereof comprises producing the tedizolid phosphate (I) by means of a coupling reaction of a compound of formula II and a compound of formula III. The preparation method uses easily available raw materials and a simple process, is economical and environmentally friendly, and is suitable for industrial production.

front page image

Process for preparing tedizolid phosphate (TD-P), useful for treating bacterial infection. The present filing represents the first PCT and first filing to be seen from Suzhou Miracpharma and Zheren Pharmaceutical, respectively, that focuses on tedizolid; however this case was first seen as a Chinese national filing (assigned to Suzhou Miracpharma), published in February 2015. The drug was developed and launched by Dong-A ST and licensees Cubist Pharmaceuticals and Bayer, for treating acute bacterial skin and skin structure infections.

Tedizolid phosphate by Charpy Manchester (Cubist) pharmaceutical companies to develop a oxazolidinone antibiotics. Tedizolid phosphate in June 2014 to obtain FDA approval in the United States, the trade name Sivextro. The drug was first approved by the FDA in the second generation oxazolidinone antibiotics, and linezolid compared to the previous generation, Sivextro some bacteria in vitro inhibitory activity 2-8 times higher security to a certain extent also improved. Because compound Tedizolid not have standard Chinese translation, so the applicant where it is transliterated as “Thai to acetazolamide.”

 

Thailand phosphate to acetazolamide (Tedizolid phosphate) Chemical name: {(5R) -3- [3- fluoro-4- [6- (2-methyl–2H- tetrazol -5-yl) pyridine-3 yl] phenyl] -2-oxazolone -5-yl} methanol phosphate (I), having the formula:

 

 

Preparation of phosphate Thailand to acetazolamide has been reported, PCT Patent No. WO2005058886, No. WO2010042887 and “European Journal of Medicinal Chemistry” 2011 on 1027 – 1039 Section 46 were reported to temozolomide and phosphate Thai analog synthesis and related intermediates. Comparative summary of these methods, which are synthetic route from Intermediate A and Intermediate B (or intermediate B ‘) by an aryl coupling reaction to achieve.

 

 

Wherein 2- (2-methyl-tetrazol-5-yl) -5-bromopyridine (Intermediate A) is generated by a tetrazolium derivative azide reaction of 2-cyano-5-bromopyridine, and then the use of methyl iodide or dimethyl sulfate, etc. methylating reagent for tetrazole ring methylation reaction, to give 2- (2-methyl-tetrazol-5-yl) -5-bromopyridine (intermediate A ) and (1-methyl-tetrazol-5-yl) -5-bromo pyridine (by-product) in a mixture of 2, by column chromatography or recrystallization to give the intermediate separator A.

 

 

Intermediate B or B ‘by R-3- (3- fluoro-4-iodo-phenyl) -2-oxo-5-oxazolidinyl methanol formed organoboron reagent or an organotin reagent, the reagent is Stille or Suzuki coupling reactions, realize intermediate a coupling.

 

 

This shows that the existing preparation method has the steps for preparing long, difficult to obtain raw materials and high costs weaknesses; preparation and use of organotins on equipment and environmental requirements are high, there is environmental pollution risks. In addition, intermediate B or B ‘structure halogens fluorine and iodine exist, reducing the selective formation of organometallic reagents, so that an increase in side effects, product quality is difficult to be effectively controlled.
Example One:

 

 

Under a nitrogen atmosphere, in a three-necked reaction flask was added 2- (2-methyl-tetrazol-5-yl) pyridine-5-boronic acid (II) (2.15g, 10.5mmol) , R-3- (3- fluoro – 4-iodo – phenyl) -2-oxo-5-oxazolidinyl methanol phosphate (III) (4.17g, 10mmol) , tetrakis (triphenylphosphine) palladium (0.23g, 0.2mmol), 1M phosphoric acid 15mL of toluene solution of potassium 30mL, warmed to reflux, maintained the reaction at reflux for 10-12 hours, TLC the reaction was complete. Ethyl acetate was added 30mL, successively washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure, the resulting oil was treated with n-hexane and ethyl acetate (1:1, V / V) was recrystallized, and dried in vacuo to give a white The solid phosphoric acid to Thailand acetazolamide (I) 3.82g, yield% 84.9, 1 the H NMR (of DMSO-d6): D 8.92 (S, IH), 8.20 (m, 2H), 7.74 (T, IH), 7.66 ( dd, 1H), 7.50 (dd , 1H), 4.95 (m, 1H), 4.46 (s, 3H), 4.21 (t, 1H), 4.05 (m, 2H), 3.91 (m, 1H), FAB-MS m / Z: 451 [the m the H +] + .
Example Two:

 

 

Under a nitrogen atmosphere, in a three-necked reaction flask was added 2- (2-methyl-tetrazol-5-yl) pyridine-5-boronic acid pinacol ester (II) (3.01g, 10.5mmol), R-3- (3 – fluoro-4-bromo – phenyl) -2-oxo-5-oxazolidinyl methanol phosphate (III) (3.69g, 10mmol), [1,1′- bis (diphenylphosphino) ferrocene Fe] dichloropalladium / dichloromethane complex (0.15g, 0.2mmol), potassium acetate (1.17g, 12mmol) and 1,4-dioxane 50mL, heated to 110 ℃, the reaction was stirred for 4-5 hours , TLC the reaction was complete. Ethyl acetate was added 50mL, successively washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure, the resulting oil was treated with n-hexane and ethyl acetate (1:1, V / V) was recrystallized, and dried in vacuo to give a white Thai solid phosphoric acid to acetazolamide (I) 4.02g, yield 89.3%.

 

Example Three:

 

 

Under a nitrogen atmosphere, in a three-necked reaction flask was added 2- (2-methyl-tetrazol-5-yl) -5-bromo – pyridine (IV) (2.4g, 10mmol), alcohol-based dual which diborane ( 1.27g, 5mmol), 1,1′- bis (diphenylphosphino) ferrocene palladium dichloride (0.82g, 1mmol), potassium acetate (1.17g, 12mmol) and 1,4-dioxane 30mL , heated to 110 deg.] C, the reaction was stirred for 4 hours. Cooled to room temperature, still under nitrogen, was added to the system for R-3- (3- fluoro-4-bromo – phenyl) -2-oxo-5-oxazolidinyl methanol phosphate (III) (3.69 g, 10mmol), 1,4- dioxane and 20mL 5M potassium phosphate 0.5mL, again heated to 100 ℃, the reaction was stirred for 4 hours, TLC the reaction was complete. Ethyl acetate was added 50mL, filtered and the filtrate was washed successively with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure, the resulting oil was treated with n-hexane and ethyl acetate (1:1, V / V) was recrystallized vacuo Thai dried to give a white solid phosphoric acid to acetazolamide (I) 3.34g, yield 74.2%.

 

IV (Preparation of the intermediate II) Example:

 

 

In a three-necked reaction flask 2- (2-methyl-tetrazol-5-yl) -5-bromo – pyridine (IV) (2.4g, 10mmol) was dissolved in 25mL anhydrous tetrahydrofuran, cooled to -55 deg.] C, was added dropwise isopropylmagnesium chloride (1M, 15ml), dropwise after completion of the reaction was stirred for 30 minutes. To the reaction system was added trimethylborate (1.25g, 12mmol), stirring was continued for 4-5 hours the reaction. At low temperature with saturated ammonium chloride solution to quench the reaction, and the reaction solution was poured into dilute hydrochloric acid and 30mL 1N reaction at room temperature for 1 hour. Extracted three times with ethyl acetate, the combined organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate. Concentrated under reduced pressure, the resulting solid is washed with petroleum ether, and then recrystallized from water to give a white solid of 2- (2-methyl-tetrazol-5-yl) pyridine-5-boronic acid (II) 1.6g, 78.0% yield, m the MS-FAB / Z: 206 [the m the H +] + .

 

Embodiment 5 (preparation of intermediate II):

 

 

In a three-necked reaction flask was added 2- (2-methyl-tetrazol-5-yl) -5-bromo – pyridine (IV) (2.4g, 10mmol) , alcohol-based dual which diborane (1.27g, 5mmol ), 1,1′-bis (diphenylphosphino) ferrocene palladium dichloride (0.82g, 1mmol), potassium acetate (1.17g, 12mmol) and 1,4-dioxane 50mL, heated to 110 ℃, the reaction was stirred for 8-10 hours to complete the reaction by TLC. Extracted three times with ethyl acetate, the combined organic phases were washed with brine, dried over anhydrous sodium sulfate. Concentrated, ethyl acetate and n-hexane (1:4) recrystallized to give an off-white solid 2- (2-methyl-tetrazol-5-yl) pyridine-5-boronic acid pinacol ester (II) 2.48g, yield 86.4 %, the MS-FAB m / Z: 288 [the m the H +] + .

 

Six (preparation of intermediate III) Example:

 

 

Under nitrogen, in a three-necked reaction flask R- glycidyl tosylate (TG) (2.28g, 10mmol) and N, N- dimethylformamide 25mL, stirred and dissolved, was added cesium carbonate (0.33 g, 1mmol) and 3-fluoro-4-bromo – phenyl isocyanate (V) (2.15g, 10mmol) , was heated to 100 ℃, after 1 hour, TLC detection completion of the reaction. Recovery of the solvent under reduced pressure, the residue was dissolved with dichloromethane and water, the organic phase was separated, the aqueous phase was extracted twice with methylene chloride, concentrated under reduced pressure to give an oil which was R-3- (3- fluoro-4-bromo – phenyl) -2-oxo-5-oxazolidinyl methanol p-toluenesulfonate (the VI), without further purification, 1N hydrochloric acid was added directly to the reaction at 50 ℃ 5 hours and extracted three times with dichloromethane The combined organic phase was successively washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The concentrate was dissolved in 30mL of triethyl phosphate was added at room temperature, phosphorus oxychloride (2.2mL, 24mmol), stirred for 2-3 hours. 30mL of ethyl acetate was added, stirred for half an hour, poured into 50g of ice-water, and stirring was continued for 2 hours at 0 deg.] C, and a solid white precipitate was filtered, the filter cake washed with acetone and dried to give an off-white solid R-3- (3-fluoro-4-bromo – phenyl) -2-oxo-5-oxazolidinyl methanol phosphate (III) 2.45g, yield 66.4%, FAB-MS m / z: 369 [m + H ] + .

 

Six (preparation of intermediate III) Example:

 

Under nitrogen, in a three-necked reaction flask R- glycidyl tosylate (TG) (2.28g, 10mmol) and tetrahydrofuran 50mL, stirred and dissolved, was added lithium iodide (0.14g, 1mmol) and 3- fluoro-4 – phenyl isocyanate (V) (2.63g, 10mmol) , was heated to reflux. after 2 hours, TLC detection completion of the reaction. Recovery of the solvent under reduced pressure, the residue was dissolved with dichloromethane and water, the organic phase was separated, the aqueous phase was extracted twice with methylene chloride, concentrated under reduced pressure to give an oil which was R-3- (3- fluoro-4 – phenyl) -2-oxo-5-oxazolidinyl methanol p-toluenesulfonate (the VI), without further purification, 1N hydrochloric acid was added directly to the reaction at 50 ℃ 5 hours and extracted three times with dichloromethane The combined organic phase was successively washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The concentrate was dissolved in 30mL of triethyl phosphate was added at room temperature, phosphorus oxychloride (2.2mL, 24mmol), stirred for 2-3 hours. 30mL of ethyl acetate was added, stirred for half an hour, poured into 50g of ice-water, and stirring was continued for 2 hours at 0 deg.] C, and a solid white precipitate was filtered, the filter cake washed with acetone and dried to give an off-white solid R-3- (3-fluoro-4-iodo – phenyl) -2-oxo-5-oxazolidinyl methanol phosphate (III) 2.65g, yield 63.7%, FAB-MS m / z: 417 [m + H ] + .

//////New Patent, Tedizolid phosphate, Suzhou MiracPharma Technology Co Ltd,  Zheren Pharmaceutical Nanjing Co Ltd, WO 2016058467

Share

Albutrepenonacog alfa

 Uncategorized  Comments Off on Albutrepenonacog alfa
Apr 272016
 
1YNSGKLEEFV QGNLERECME EKCSFEEARE VFENTERTTE FWKQYVDGDQ
51CESNPCLNGG SCKDDINSYE CWCPFGFEGK NCELDVTCNI KNGRCEQFCK
101NSADNKVVCS CTEGYRLAEN QKSCEPAVPF PCGRVSVSQT SKLTRAETVF
151PDVDYVNSTE AETILDNITQ STQSFNDFTR VVGGEDAKPG QFPWQVVLNG
201KVDAFCGGSI VNEKWIVTAA HCVETGVKIT VVAGEHNIEE TEHTEQKRNV
251IRIIPHHNYN AAINKYNHDI ALLELDEPLV LNSYVTPICI ADKEYTNIFL
301KFGSGYVSGW GRVFHKGRSA LVLQYLRVPL VDRATCLRST KFTIYNNMFC
351AGFHEGGRDS CQGDSGGPHV TEVEGTSFLT GIISWGEECA MKGKYGIYTK
401VSRYVNWIKE KTKLTPVSQT SKLTRAETVF PDVDAHKSEV AHRFKDLGEE
451NFKALVLIAF AQYLQQCPFE DHVKLVNEVT EFAKTCVADE SAENCDKSLH
501TLFGDKLCTV ATLRETYGEM ADCCAKQEPE RNECFLQHKD DNPNLPRLVR
551PEVDVMCTAF HDNEETFLKK YLYEIARRHP YFYAPELLFF AKRYKAAFTE
601CCQAADKAAC LLPKLDELRD EGKASSAKQR LKCASLQKFG ERAFKAWAVA
651RLSQRFPKAE FAEVSKLVTD LTKVHTECCH GDLLECADDR ADLAKYICEN
701QDSISSKLKE CCEKPLLEKS HCIAEVENDE MPADLPSLAA DFVESKDVCK
751NYAEAKDVFL GMFLYEYARR HPDYSVVLLL RLAKTYETTL EKCCAAADPH
801ECYAKVFDEF KPLVEEPQNL IKQNCELFEQ LGEYKFQNAL LVRYTKKVPQ
851VSTPTLVEVS RNLGKVGSKC CKHPEAKRMP CAEDYLSVVL NQLCVLHEKT
901PVSDRVTKCC TESLVNRRPC FSALEVDETY VPKEFNAETF TFHADICTLS
951EKERQIKKQT ALVELVKHKP KATKEQLKAV MDDFAAFVEK CCKADDKETC
1001FAEEGKKLVA ASQAALGL

Albutrepenonacog alfa

recombinant factor IX

(Idelvion®)Approved, 2016-03-04 USFDA

A recombinant albumin-human coagulation factor IX (FIX) fusion protein indicated for the treatment and prevention of bleeding in patients with hemophilia B.

Research Code CSL-654

CAS 1357448-54-4
Blood-​coagulation factor IX (synthetic human) fusion protein with peptide (synthetic linker) fusion protein with serum albumin (synthetic human)
Type Recombinant coagulation factor
Source Human
Molecular Formula C5077H7846N1367O1588S67
Molecular Weight ~125000

Other Names

  • Albutrepenonacog alfa

Protein Sequence

Sequence Length: 1018modified (modifications unspecified)

  • Originator CSL Behring
  • Class Albumins; Antihaemorrhagics; Blood coagulation factors; Recombinant fusion proteins
  • Mechanism of Action Blood coagulation factor replacements; Factor X stimulants
  • Orphan Drug Status Yes – Haemophilia B
  • Marketed Haemophilia B

Most Recent Events

  • 21 Mar 2016 Launched for Haemophilia B (In adolescents, In children, In adults) in USA (IV) – First global launch
  • 07 Mar 2016 Preregistration for Haemophilia B in Australia (IV) before March 2016
  • 04 Mar 2016 Registered for Haemophilia B (In children, In adolescents, In adults) in USA (IV)
Company CSL Ltd.
Description Fusion protein linking recombinant coagulation Factor IX with recombinant albumin
Molecular Target Factor IX
Mechanism of Action
Therapeutic Modality Biologic: Fusion protein
Latest Stage of Development Approved
Standard Indication Hemophilia
Indication Details Treat and prevent bleeding episodes in hemophilia B patients; Treat hemophilia B
Regulatory Designation U.S. – Orphan Drug (Treat and prevent bleeding episodes in hemophilia B patients);
EU – Orphan Drug (Treat and prevent bleeding episodes in hemophilia B patients);
Switzerland – Orphan Drug (Treat and prevent bleeding episodes in hemophilia B patients)
  • BNF Category:
    Antifibrinolytic drugs and haemostatics (02.11)
    Pharmacology: Albutrepenonacog alfa is a recombinant factor IX (rIX-FP) albumin fusion protein, designed to exhibit an extended half-life. Factor IX has a short half-life which necessitates multiple injections.
    Epidemiology: Haemophilia B is a genetic disorder caused by missing or defective factor IX, a clotting protein. It has a prevalence of around 1 in 50,000 live births in the UK and is more common in males. In 2012-13, there were 476 hospital admissions in England due to haemophilia B, accounting for 508 finished consultant episodes and 125 bed days.
    Indication: Haemophilia B

Albutrepenonacog alfa was approved by the U.S. Food and Drug Administration (FDA) on March 4, 2016. It was developed and marketed as Idelvion® by CSL Behring.

Albutrepenonacog alfa is a recombinant albumin-human coagulation factor IX (FIX) fusion protein, which replaces the missing FIX needed for effective hemostasis. It is indicated for the treatment and prevention of bleeding in children and adults with hemophilia B.

Idelvion® is available as injection (lyophilized powder) for intravenous use, containing 250 IU, 500 IU, 1000 IU or 2000 IU of albutrepenonacog alfa in single-use vials. In control and prevention of bleeding episodes and perioperative management, the required dosage is determined using the following formulas: Required Dose (IU) = Body Weight (kg) x Desired Factor IX rise (% of normal or IU/dL) x (reciprocal of recovery (IU/kg per IU/dL)). In routine prophylaxis, the recommended dose is 25-40 IU/kg (for patients ≥12 years of age) or 40-55 IU/kg (for patients <12 years of age) every 7 days.

EMA

On 25 February 2016, the Committee for Medicinal Products for Human Use (CHMP) adopted a positive opinion, recommending the granting of a marketing authorisation for the medicinal product IDELVION, intended for treatment and prophylaxis of bleeding in patients with Haemophilia B. IDELVION was designated as an orphan medicinal producton 04 February 2010. The applicant for this medicinal product is CSL Behring GmbH.

IDELVION will be available as 250 IU, 500 IU, 1000 IU and 2000 IU Powder and solvent for solution for injection. The active substance of IDELVION is albutrepenonacog alfa, an antihaemorrhagic, blood coagulation factor IX, (ATC code: B02BD04). It works as replacement therapy and temporarily increases plasma levels of factor IX, helping to prevent and control bleeding.

The benefits with IDELVION are its ability to stop the bleeding when given on demand and prevent bleeding when used as routine prophylaxis or for surgical procedures. The most common side effects are injection site reaction and headache.

The full indication is: “the treatment and prophylaxis of bleeding in patients with Haemophilia B (congenital factor IX deficiency)”. Idelvion can be used in all age groups. It is proposed that IDELVION be prescribed by physicians experienced in the treatment of haemophilia B.

Detailed recommendations for the use of this product will be described in the summary of product characteristics (SmPC), which will be published in the European public assessment report (EPAR) and made available in all official European Union languages after the marketing authorisation has been granted by the European Commission.

Name Idelvion
INN or common name albutrepenonacog alfa
Therapeutic area Hemophilia B
Active substance albutrepenonacog alfa
Date opinion adopted 25/02/2016
Company name CSL Behring GmbH
Status Positive
Application type Initial authorisation

//////Albutrepenonacog alfa, CSL-654,  Idelvion; Recombinant factor IX – CSL Behring,  Recombinant factor IX fusion protein linked with human albumin,  rFIX-FP – CSL Behring; rIX-FP, Orphan Drug Status,  Haemophilia B, recombinant factor IX , FDA 2016

Share

Daratumumab

 Uncategorized  Comments Off on Daratumumab
Apr 262016
 

Daratumumab

(Darzalex®)Approved

An anti-CD38 monoclonal antibody used to treat multiple myeloma.

Research Code HuMax-CD-38; HuMaxCD-38

CAS No.

Daratumumab (HuMax®-CD38)

Daratumumab (Darzalex) is an anti-cancer drug. It binds to CD38.[1] Daratumumab was originally developed by Genmab, but it is now being jointly developed by Genmab along with the Johnson & Johnson subsidiary Janssen Biotech, which acquired worldwide commercialization rights to the drug from Genmab.[2]

Clinical trials

Encouraging preliminary results were reported in June 2012 from a Phase 1/2 clinical trial in relapsed multiple myeloma patients.[3]Updated trial results presented in December 2012 indicate daratumumab is continuing to show promising single-agent anti-myeloma activity.[4] A 2015 study compared monotherapy 8 and 16mg/kg at monthly to weekly intervals.[5]

In November 2015, the U.S. Food and Drug Administration approved daratumumab for treatement of multiple myeloma.[6]

Interference with blood compatibility testing

Daratumumab can also bind to CD38 present on red blood cells and interfere with antibody testing. Patients will show a panreactive antibody panel, including a positive auto-control. Treatment of the antibody panel cells with dithiothreitol (DTT) and repeating testing will effectively negate the binding of daratumumab to CD38 on the RBC surface; however, DTT also inactivates/destroys many antigens on the RBC surface by disrupting disulfide bonds. Fortunately, the only antigen system affected that is associated with common, clinically significant antibodies is Kell, making K-negative RBCs a reasonable alternative when urgent transfusion is indicated.[7]

Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. It is believed to induce rapid tumor cell death through programmed cell death, or apoptosis, and multiple immune-mediated mechanisms, including complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity.

Daratumumab is approved in the United States for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a proteasome inhibitor (PI) and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.

In May 2013, daratumumab received Fast Track Designation and Breakthrough Therapy Designation from the US FDA for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy including a PI and an immunomodulatory agent or who are double refractory to a PI and an immunomodulatory agent.  Breakthrough Therapy Designation is a program intended to expedite the development and review of drugs to treat serious or life-threatening diseases in cases where preliminary clinical evidence shows that the drug may provide substantial improvements over available therapy. Daratumumab has also received Orphan Drug Designation from the US FDA and the EMA for the treatment of multiple myeloma.

Five Phase III clinical studies with daratumumab in relapsed and frontline settings are currently ongoing. Additional studies are ongoing or planned to assess its potential in other malignant and pre-malignant diseases on which CD38 is expressed, such as smoldering myeloma and non-Hodgkin’s lymphoma.

Genmab announced a global license and development agreement for daratumumab with Janssen Biotech, Inc. in August 2012.  The agreement became effective in September 2012.

DARZALEX® (daratumumab) Approved by U.S. FDA: First Human Anti-CD38 Monoclonal Antibody Available for the Treatment of Multiple Myeloma

First-in-class immunotherapy approved for multiple myeloma patients who have received three or more prior lines of therapy, including a proteasome inhibitor (PI) and an immunomodulatory agent or who are double refractory to a PI and immunomodulatory agent
HORSHAM, PA, November 16, 2015 – Janssen Biotech, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, announced today the U.S. Food and Drug Administration (FDA) has approved DARZALEX® (daratumumab) injection for intravenous infusion for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a proteasome inhibitor (PI) and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.1 This indication is approved under accelerated approval based on response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. Multiple myeloma is an incurable blood cancer that occurs when malignant plasma cells grow uncontrollably in the bone marrow.2,3 Refractory cancer occurs when a patient’s disease is resistant to treatment or in the case of multiple myeloma, the disease progresses within 60 days of their last therapy.4,5 Relapsed cancer means the disease has returned after a period of initial, partial or complete remission.6

DARZALEX is the first human anti-CD38 monoclonal antibody (mAb) approved anywhere in the world. CD38 is a surface protein that is expressed by most, if not all, multiple myeloma cells.7 DARZALEX is believed to induce tumor cell death through multiple immune-mediated mechanisms of action,8,9 in addition to apoptosis, in which a series of molecular steps in a cell lead to its death.10 Its approval comes just two months after the Biologics License Application (BLA) was accepted for Priority Review by the FDA in September 2015.11 DARZALEX received Breakthrough Therapy Designation from the FDA for this indication in May 2013.12

“Multiple myeloma is a highly complex disease and remains incurable, with almost all patients relapsing or becoming resistant to therapy,” said DARZALEX clinical trial investigator Paul G. Richardson, M.D., Clinical Program Leader and Director of Clinical Research, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute. “With DARZALEX, we have a promising new immunotherapy, which has shown pronounced efficacy as a single agent with an acceptable adverse event profile. This is especially important for treating these heavily pre-treated patients in whom all of the major classes of currently available medicines have failed.”

The pivotal open-label Phase 2 MMY2002 (SIRIUS) study showed treatment with single-agent DARZALEX resulted in an overall response rate (ORR) of 29.2 percent (95% CI; 20.8, 38.9) in patients who received a median of five prior lines of therapy, including a PI and an immunomodulatory agent.1

Stringent complete response (sCR) was reported in 2.8 percent of patients, very good partial response (VGPR) was reported in 9.4 percent of patients, and partial response (PR) was reported in 17 percent of patients.1 These efficacy results were based on ORR as determined by the Independent Review Committee assessment using IMWG (International Myeloma Working Group) criteria and the range for median duration of response.

For responders, the median duration of response was 7.4 months (range 1.2-13.1+ months).1 At baseline, 97 percent of patients were refractory to their last line of therapy, 95 percent were refractory to both a PI and an immunomodulatory agent, and 77 percent were refractory to alkylating agents.1 Additional efficacy data from the Phase 1/2 GEN501 monotherapy study – published in The New England Journal of Medicine in August 2015also support this approval.1

“The responses we saw in clinical trials that led to today’s approval were striking, especially considering that these patients received a median of five prior lines of therapy,” said MMY2002 investigator Sagar Lonial, M.D., Chief Medical Officer, Winship Cancer Institute of Emory University and Professor and Executive Vice Chair, Department of Hematology and Medical Oncology, Emory University School of Medicine. “It appears the mechanism of action for daratumumab (DARZALEX) may play an important role in its single-agent activity among this group of advanced-stage multiple myeloma patients.”

“Living with multiple myeloma is challenging, both physically and emotionally, especially as the disease progresses and treatment options become more limited,” said Debby Graff, a patient enrolled in a clinical trial at Dana-Farber Cancer Institute. “I am encouraged by emerging treatments for multiple myeloma, and I have a new outlook on my path forward.”

“While there have been considerable improvements over the past decade in the treatment of people living with multiple myeloma, these patients face a long, hard road – especially those whose disease has relapsed or is no longer responding to current therapies,” said Walter M. Capone, President and Chief Executive Officer of the Multiple Myeloma Research Foundation (MMRF). “With the approval of daratumumab, a new antibody option targeting CD38, along with ongoing work to advance the development of novel classes of therapies by both Janssen and MMRF, we are ushering in a new era of myeloma therapy focused on individualized treatment approaches for patients with significant unmet needs.”

“Our focus is developing transformational medicines for people living with hard-to-treat cancers, such as multiple myeloma,” said Peter F. Lebowitz, M.D., Ph.D., Global Oncology Head, Janssen. “The rapid development and approval of DARZALEX – the first human anti-CD38 monoclonal antibody – is a great example of this commitment and our ongoing work in developing immunotherapies. We will continue to study this compound as both a mono- and a combination therapy to understand its full clinical benefit for patients across the treatment continuum in multiple myeloma and other tumor types.”

The warnings and precautions for DARZALEX include infusion reactions, interference with serological testing and interference with determination of complete response (see Important Safety Information).1 The most frequently reported adverse reactions (incidence ≥20%) were: fatigue, nausea, back pain, pyrexia, cough and upper respiratory tract infection.1

In data from three pooled clinical studies including a total of 156 patients, four percent of patients discontinued treatment due to adverse reactions.1 Infusion reactions were reported in approximately half of all patients treated with DARZALEX.1 Common (≥5 percent) symptoms of infusion reactions included nasal congestion, chills, cough, allergic rhinitis, throat irritation, dyspnea (shortness of breath) and nausea.1 Severe infusion reactions, including bronchospasm, dyspnea, hypoxia and hypertension (<2 percent each).1

The recommended dose of DARZALEX is 16 mg/kg body weight administered as an intravenous infusion.1 The dosing schedule begins with weekly administration (weeks 1-8) and reduces in frequency over time to every two weeks (weeks 9-24) and ultimately every four weeks (week 25 onwards until disease progression).1

In August 2012, Janssen Biotech, Inc. and Genmab A/S entered a worldwide agreement, which granted Janssen an exclusive license to develop, manufacture and commercialize DARZALEX.13 Janssen is currently the global sponsor of all but one clinical study. DARZALEX will be commercialized in the U.S. by Janssen Biotech, Inc.

About Multiple Myeloma
Multiple myeloma is an incurable blood cancer that occurs when malignant plasma cells grow uncontrollably in the bone marrow.2,3 Multiple myeloma is the third most common blood cancer in the U.S., following only leukemia and lymphoma.14 Approximately 26,850 new patients will be diagnosed with multiple myeloma, and approximately 11,240 people will die from the disease in the U.S. in 2015.15 Globally, it is estimated that 124,225 people will be diagnosed, and 87,084 will die from the disease in 2015.16,17 While some patients with multiple myeloma have no symptoms at all, most patients are diagnosed due to symptoms which can include bone problems, low blood counts, calcium elevation, kidney problems or infections.18 Patients who relapse after treatment with standard therapies (including PIs or immunomodulatory agents) typically have poor prognoses and few remaining options.3

Access to DARZALEX® (daratumumab) Injection, for Intravenous Infusion
DARZALEX (daratumumab) injection for intravenous infusion will be available for distribution in the U.S. within two weeks following FDA approval. Janssen Biotech offers comprehensive access and support information, resources and services to assist U.S. patients in gaining access to DARZALEX through the Janssen CarePath Program. For more information, health care providers or patients can contact: 1-844-55DARZA (1-844-553-2792). Information will also be available at www.DARZALEX.com. Dedicated case coordinators are available to work with both healthcare providers and patients.

Patients with private or commercial insurance may be eligible for the Janssen CarePath Savings Program for DARZALEX. Information on the enrollment process will be available online at www.darzalex.com/access-and-cost-support#affordability.

About DARZALEX® (daratumumab) Injection, for Intravenous Infusion
DARZALEX® (daratumumab) injection for intravenous infusion is indicated for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a proteasome inhibitor (PI) and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.1 This indication is approved under accelerated approval based on response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. DARZALEX is the first human anti-CD38 monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (FDA) approval to treat multiple myeloma. DARZALEX is believed to induce tumor cell death through apoptosis, in which a series of molecular steps in a cell lead to its death1,10 and multiple immune-mediated mechanisms of action, including complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP).1,8 More information will be available atwww.DARZALEX.com.

References

  1.  World Health Organization (2009). “International Nonproprietary Names for Pharmaceutical Substances (INN). Proposed INN: List 101” (PDF). WHO Drug Information 23 (2).
  2.  “‘Janssen Biotech Announces Global License and Development Agreement for Investigational Anti-Cancer Agent Daratumumab'”. Janssen Biotech. Retrieved 2013-01-31.
  3.  “ASCO: Drug Shows Promise in Myeloma”. MedPage Today.
  4.  “‘Daratumumab Continues To Show Promise For Relapsed/Refractory Myeloma Patients (ASH 2012)'”. The Myeloma Beacon. Retrieved 2013-01-31.
  5.  Lokhorst, Henk M.; Plesner, Torben; Laubach, Jacob P.; Nahi, Hareth; Gimsing, Peter; Hansson, Markus; Minnema, Monique C.; Lassen, Ulrik; Krejcik, Jakub (2015-09-24). “Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma”. The New England Journal of Medicine 373 (13): 1207–1219. doi:10.1056/NEJMoa1506348. ISSN 1533-4406. PMID 26308596.
  6.  http://www.medscape.com/viewarticle/854548?nlid=91686_3663&src=wnl_edit_newsal&uac=78316PX&impID=890536&faf=1
  7.  Chapuy, CI; Nicholson, RT; Aguad, MD; Chapuy, B; Laubach, JP; Richardson, PG; Doshi, P; Kaufman, RM (June 2015). “Resolving the daratumumab interference with blood compatibility testing.”. Transfusion 55 (6 Pt 2): 1545–54. PMID 25764134.
Daratumumab
Monoclonal antibody
Type Whole antibody
Source Human
Target CD38
Legal status
Legal status
Identifiers
CAS Number 945721-28-8 
ATC code none
ChemSpider none
UNII 4Z63YK6E0E Yes
Chemical data
Formula C6466H9996N1724O2010S42
Molar mass 145,391.67 g·mol−1

////Daratumumab

Share

Idarucizumab

 Uncategorized  Comments Off on Idarucizumab
Apr 262016
 

 

Idarucizumab

(Praxbind®) Approved

An antidote for rapid reversal of dabigatran-induced anticoagulation indicated for emergency surgery (urgent procedures) and life-threatening or uncontrolled bleeding in patients treated with dabigatran.

BI-655075

CAS No.1362509-93-0

1-​225-​Immunoglobulin G1, anti-​(dabigatran) (human-​Mus musculus γ1-​chain) (225→219′)​-​disulfide with immunoglobulin G1, anti-​(dabigatran) (human-​Mus musculus κ-​chain)

Other Names

  • BI 655075
  • Idarucizumab
  • Praxbind

Protein Sequence

Sequence Length: 444, 225, 219multichain; modified (modifications unspecified)

Idarucizumab, sold under the brand name Praxbind, is a monoclonal antibody designed for the reversal of anticoagulant effects ofdabigatran.[1][2]

This drug was developed by Boehringer Ingelheim Pharmaceuticals. A large study sponsored by the manufacturer found that idarucizumab effectively reversed anticoagulation by dabigatran within minutes.[3] It was FDA approved in October 2015.[4] In the United States the wholesale cost is $3500 US.[5]

On October 16, 2015, the U. S. Food and Drug Administration granted accelerated approval to idarucizumab (Praxbind  Injection, Boehringer Ingelheim Pharmaceuticals, Inc.) for the treatment of patients treated with dabigatran (Pradaxa) when reversal of the anticoagulant effects of dabigatran is needed for emergency surgery/urgent procedures, or in life-threatening or uncontrolled bleeding.
The approval was based on three randomized, placebo-controlled trials enrolling a total of 283 healthy volunteers who received either dabigatran and idarucizumab or dabigatran and placebo.  The primary endpoint in healthy volunteer trials was the reduction of unbound dabigatran to undetectable levels after the administration of 5 g idarucizumab.  This reduction of dabigatran plasma concentration was observed over the entire 24 hour observation period.
These trials are supported by an ongoing open-label trial in which data from 123 patients receiving dabigatran who had life-threatening or uncontrolled bleeding, or who required emergency surgery/urgent procedures was available for evaluation.  This open-label trial continues to enroll and follow patients. The primary endpoint is the reversal of dabigatran’s anticoagulant effect (measured by ecarin clotting time or dilute thrombin time) in the first four hours after administration of 5 g idarucizumab. In these 123 patients, the anticoagulant effect of dabigatran was completely reversed in more than 89% of patients within four hours of receiving idarucizumab.  Between 12 and 24 hours after idarucizumab administration, elevated coagulation parameters have been observed in a limited number of patients.
Safety data were evaluated in 224 healthy volunteers who received at least one dose of idarucizumab and 123 patients who received idarucizumab. Headache was the most common adverse event reported in more than 5% of healthy volunteers.  Among the 123 patients treated with idarucizumab in the ongoing open-label trial, adverse events reported in more than 5% of patients were hypokalemia, delirium, constipation, pyrexia and pneumonia.
Praxbind is the first approved reversal agent. It is specific for dabigatran.
Continued approval for this indication may be contingent upon the results of completion of the ongoing open-label trial.
The recommended dose for idarucizumab is 5 g (2.5g per vial) administered intravenously as two consecutive 2.5 g infusions or bolus injection by injecting both vials consecutively one after another via syringe.

References

  1.  Statement On A Nonproprietary Name Adopted By The USAN Council – Idarucizumab, American Medical Association.
  2.  World Health Organization (2013). “International Nonproprietary Names for Pharmaceutical Substances (INN). Proposed INN: List 109” (PDF). WHO Drug Information 27 (2).
  3.  Pollack, Charles V.; Reilly, Paul A.; Eikelboom, John; Glund, Stephan; Verhamme, Peter; Bernstein, Richard A.; Dubiel, Robert; Huisman, Menno V.; Hylek, Elaine M. (2015-08-06).“Idarucizumab for Dabigatran Reversal”. The New England Journal of Medicine 373 (6): 511–520. doi:10.1056/NEJMoa1502000. ISSN 1533-4406. PMID 26095746.
  4.  “Press Announcements – FDA approves Praxbind, the first reversal agent for the anticoagulant Pradaxa”. www.fda.gov. Retrieved 2015-10-17.
  5.  Elia, Joe. “Dabigatran-Reversal Agent Price Set”. Retrieved 20 October 2015.
Idarucizumab
Monoclonal antibody
Type Fab fragment
Source Humanized (from mouse)
Target Dabigatran
Clinical data
Trade names Praxbind
Identifiers
CAS Number 1362509-93-0
ATC code V03AB37 (WHO)
IUPHAR/BPS 8298
ChemSpider none
Chemical data
Formula C2131H3299N555O671S11
Molar mass 47.8 kg/mol

/////Idarucizumab

Share

Asfotase alfa

 Uncategorized  Comments Off on Asfotase alfa
Apr 262016
 

 STR1

> Asfotase Alfa Sequence
LVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFLGDGMGVSTVTAARILKGQL
HHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTATAYLCGVKANEGTVGVSAATERS
RCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHATPSAAYAHSADRDWYSDNEMPPEAL
SQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPKNKTDVEYESDEKARGTRLDGLDLVDTWK
SFKPRYKHSHFIWNRTELLTLDPHNVDYLLGLFEPGDMQYELNRNNVTDPSLSEMVVVAI
QILRKNPKGFFLLVEGGRIDHGHHEGKAKQALHEAVEMDRAIGQAGSLTSSEDTLTVVTA
DHSHVFTFGGYTPRGNSIFGLAPMLSDTDKKPFTAILYGNGPGYKVVGGERENVSMVDYA
HNNYQAQSAVPLRHETHGGEDVAVFSKGPMAHLLHGVHEQNYVPHVMAYAACIGANLGHC
APASSLKDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV
KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE
KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT
TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKDIDDDD
DDDDDD

Asfotase alfa

Indicated for the treatment of patients with perinatal/infantile and juvenile onset hypophosphatasia (HPP).

(Strensiq®)Approved

A mineralized tissue targeted fusion protein used to treat hypophosphatasia.

Research Code ALXN-1215; ENB-0040; sALP-FcD-10

CAS No.1174277-80-5

180000.0

C7108H11008N1968O2206S56

Company Alexion Pharmaceuticals Inc.
Description Fusion protein incorporating the catalytic domain of human tissue non-specific alkaline phosphatase (TNSALP; ALPL) and a bone-targeting peptide
Molecular Target
Mechanism of Action Enzyme replacement therapy
Therapeutic Modality Biologic: Fusion protein
Latest Stage of Development Approved
Standard Indication Metabolic (unspecified)
Indication Details Treat hypophosphatasia (HPP); Treat hypophosphatasia (HPP) in children; Treat hypophosphatasia (HPP) in patients whose first signs or symptoms occurred prior to 18 years of age; Treat perinatal, infantile and juvenile-onset hypophosphatasia (HPP)
Regulatory Designation U.S. – Breakthrough Therapy (Treat hypophosphatasia (HPP) in children);
U.S. – Breakthrough Therapy (Treat hypophosphatasia (HPP) in patients whose first signs or symptoms occurred prior to 18 years of age);
U.S. – Fast Track (Treat hypophosphatasia (HPP));
U.S. – Orphan Drug (Treat hypophosphatasia (HPP));
U.S. – Priority Review (Treat hypophosphatasia (HPP) in children);
EU – Accelerated Assessment (Treat hypophosphatasia (HPP));
EU – Accelerated Assessment (Treat hypophosphatasia (HPP) in children);
EU – Orphan Drug (Treat hypophosphatasia (HPP));
Japan – Orphan Drug (Treat hypophosphatasia (HPP));
Australia – Orphan Drug (Treat hypophosphatasia (HPP)

Asfotase Alfa is a first-in-class bone-targeted enzyme replacement therapy designed to address the underlying cause of hypophosphatasia (HPP)—deficient alkaline phosphatase (ALP). Hypophosphatasia is almost always fatal when severe skeletal disease is obvious at birth. By replacing deficient ALP, treatment with Asfotase Alfa aims to improve the elevated enzyme substrate levels and improve the body’s ability to mineralize bone, thereby preventing serious skeletal and systemic patient morbidity and premature death. Asfotase alfa was first approved by Pharmaceuticals and Medicals Devices Agency of Japan (PMDA) on July 3, 2015, then approved by the European Medicine Agency (EMA) on August 28, 2015, and was approved by the U.S. Food and Drug Administration (FDA) on October 23, 2015. Asfotase Alfa is marketed under the brand name Strensiq® by Alexion Pharmaceuticals, Inc. The annual average price of Asfotase Alfa treatment is $285,000.

Hypophosphatasia (HPP) is a rare inheritable disease that results from loss-of-function mutations in the ALPL gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). Therapeutic options for treating the underlying pathophysiology of the disease have been lacking, with the mainstay of treatment being management of symptoms and supportive care. HPP is associated with significant morbidity and mortality in paediatric patients, with mortality rates as high as 100 % in perinatal-onset HPP and 50 % in infantile-onset HPP. Subcutaneous asfotase alfa (Strensiq(®)), a first-in-class bone-targeted human recombinant TNSALP replacement therapy, is approved in the EU for long-term therapy in patients with paediatric-onset HPP to treat bone manifestations of the disease. In noncomparative clinical trials in infants and children with paediatric-onset HPP, asfotase alfa rapidly improved radiographically-assessed rickets severity scores at 24 weeks (primary timepoint) as reflected in improvements in bone mineralization, with these benefits sustained after more than 3 years of treatment. Furthermore, patients typically experienced improvements in respiratory function, gross motor function, fine motor function, cognitive development, muscle strength (normalization) and ability to perform activities of daily living, and catch-up height-gain. In life-threatening perinatal and infantile HPP, asfotase alfa also improved overall survival. Asfotase alfa was generally well tolerated in clinical trials, with relatively few patients discontinuing treatment and most treatment-related adverse events being of mild to moderate intensity. Thus, subcutaneous asfotase alfa is a valuable emerging therapy for the treatment of bone manifestations in patients with paediatric-onset HPP.

 

FDA

October 23, 2015

Release

 Today, the U.S. Food and Drug Administration approved Strensiq (asfotase alfa) as the first approved treatment for perinatal, infantile and juvenile-onset hypophosphatasia (HPP).

HPP is a rare, genetic, progressive, metabolic disease in which patients experience devastating effects on multiple systems of the body, leading to severe disability and life-threatening complications. It is characterized by defective bone mineralization that can lead to rickets and softening of the bones that result in skeletal abnormalities. It can also cause complications such as profound muscle weakness with loss of mobility, seizures, pain, respiratory failure and premature death. Severe forms of HPP affect an estimated one in 100,000 newborns, but milder cases, such as those that appear in childhood or adulthood, may occur more frequently.

“For the first time, the HPP community will have access to an approved therapy for this rare disease,” said Amy G. Egan, M.D., M.P.H., deputy director of the Office of Drug Evaluation III in the FDA’s Center for Drug Evaluation and Research (CDER). “Strensiq’s approval is an example of how the Breakthrough Therapy Designation program can bring new and needed treatments to people with rare diseases.”

Strensiq received a breakthrough therapy designation as it is the first and only treatment for perinatal, infantile and juvenile-onset HPP. The Breakthrough Therapy Designation program encourages the FDA to work collaboratively with sponsors, by providing timely advice and interactive communications, to help expedite the development and review of important new drugs for serious or life-threatening conditions. In addition to designation as a breakthrough therapy, the FDA granted Strensiq orphan drug designation because it treats a disease affecting fewer than 200,000 patients in the United States.

Orphan drug designation provides financial incentives, like clinical trial tax credits, user fee waivers, and eligibility for market exclusivity to promote rare disease drug development. Strensiq was also granted priority review, which is granted to drug applications that show a significant improvement in safety or effectiveness in the treatment of a serious condition. In addition, the manufacturer of Strensiq was granted a rare pediatric disease priority review voucher – a provision intended to encourage development of new drugs and biologics for the prevention and treatment of rare pediatric diseases. Development of this drug was also in part supported by the FDA Orphan Products Grants Program, which provides grants for clinical studies on safety and/or effectiveness of products for use in rare diseases or conditions.

Strensiq is administered via injection three or six times per week. Strensiq works by replacing the enzyme (known as tissue-nonspecific alkaline phosphatase) responsible for formation of an essential mineral in normal bone, which has been shown to improve patient outcomes.

The safety and efficacy of Strensiq were established in 99 patients with perinatal (disease occurs in utero and is evident at birth), infantile- or juvenile-onset HPP who received treatment for up to 6.5 years during four prospective, open-label studies. Study results showed that patients with perinatal- and infantile-onset HPP treated with Strensiq had improved overall survival and survival without the need for a ventilator (ventilator-free survival). Ninety-seven percent of treated patients were alive at one year of age compared to 42 percent of control patients selected from a natural history study group. Similarly, the ventilator-free survival rate at one year of age was 85 percent for treated patients compared to less than 50 percent for the natural history control patients.

Patients with juvenile-onset HPP treated with Strensiq showed improvements in growth and bone health compared to control patients selected from a natural history database. All treated patients had improvement in low weight or short stature or maintained normal height and weight. In comparison, approximately 20 percent of control patients had growth delays over time, with shifts in height or weight from the normal range for children their age to heights and weights well below normal for age. Juvenile-onset patients also showed improvements in bone mineralization, as measured on a scale that evaluates the severity of rickets and other HPP-related skeletal abnormalities based on x-ray images. All treated patients demonstrated substantial healing of rickets on x-rays while some natural history control patients showed increasing signs of rickets over time.

The most common side effects in patients treated with Strensiq include injection site reactions, hypersensitivity reactions (such as difficulty breathing, nausea, dizziness and fever), lipodystrophy (a loss of fat tissue resulting in an indentation in the skin or a thickening of fat tissue resulting in a lump under the skin) at the injection site, and ectopic calcifications of the eyes and kidney.

Strensiq is manufactured by Alexion Pharmaceuticals Inc., based in Cheshire, Connecticut.

 

Patent Number Pediatric Extension Approved Expires (estimated)
US7763712 No 2004-04-21 2026-07-15

STRENSIQ is a formulation of asfotase alfa, which is a soluble glycoproteincomposed of two identical polypeptide chains. Each chain contains 726amino acids with a theoretical mass of 161 kDa. Each chain consists of the catalytic domain of human tissue non-specific alkaline phosphatase (TNSALP), the human immunoglobulin G1 Fc domain and a deca-aspartatepeptide used as a bone targeting domain. The two polypeptide chains are covalently linked by two disulfide bonds.

STRENSIQ is a tissue nonspecific alkaline phosphatase produced byrecombinant DNA technology in a Chinese hamster ovary cell line. TNSALP is a metallo-enzyme that catalyzes the hydrolysis of phosphomonoesters with release of inorganic phosphate and alcohol. Asfotase alfa has a specific activity of 620 to 1250 units/mg. One activity unit is defined as the amount of asfotase alfa required to form 1 μmol of p-nitrophenol from pNPP per minute at 37°C.

STRENSIQ (asfotase alfa) is a sterile, preservative-free, nonpyrogenic, clear, slightly opalescent or opalescent, colorless to slightly yellow, with few small translucent or white particles, aqueous solution for subcutaneous administration. STRENSIQ is supplied in glass single-use vials containing asfotase alfa; dibasic sodium phosphate, heptahydrate; monobasic sodium phosphate, monohydrate; and sodium chloride at a pH between 7.2 and 7.6. Table 5 describes the content of STRENSIQ vial presentations.

Table 5: Content of STRENSIQ Vial Presentations

 

INGREDIENT QUANTITY PER VIAL
ASFOTASE ALFA 18 MG/0.45 ML 28 MG/0.7 ML 40 MG/ML 80 MG/0.8 ML
Dibasic sodium phosphate, heptahydrate 2.48 mg 3.85 mg 5.5 mg 4.4 mg
Monobasic sodium phosphate, monohydrate 0.28 mg 0.43 mg 0.62 mg 0.5 mg
Sodium chloride 3.94 mg 6.13 mg 8.76 mg 7.01 mg

 

REFERNCES

http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/003794/WC500194340.pdf

  1. Whyte MP: Hypophosphatasia – aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016 Apr;12(4):233-46. doi: 10.1038/nrendo.2016.14. Epub 2016 Feb 19. [PubMed:26893260 ]
  2. Whyte MP, Rockman-Greenberg C, Ozono K, Riese R, Moseley S, Melian A, Thompson DD, Bishop N, Hofmann C: Asfotase Alfa Treatment Improves Survival for Perinatal and Infantile Hypophosphatasia. J Clin Endocrinol Metab. 2016 Jan;101(1):334-42. doi: 10.1210/jc.2015-3462. Epub 2015 Nov 3. [PubMed:26529632 ]
  3. Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, Van Sickle BJ, Simmons JH, Edgar TS, Bauer ML, Hamdan MA, Bishop N, Lutz RE, McGinn M, Craig S, Moore JN, Taylor JW, Cleveland RH, Cranley WR, Lim R, Thacher TD, Mayhew JE, Downs M, Millan JL, Skrinar AM, Crine P, Landy H: Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med. 2012 Mar 8;366(10):904-13. doi: 10.1056/NEJMoa1106173. [PubMed:22397652 ]

//////Asfotase alfa, Strensiq, treat hypophosphatasia, ALXN-1215,  ENB-0040,  sALP-FcD-10, FDA 2015

Share

Reslizumab

 Uncategorized  Comments Off on Reslizumab
Apr 252016
 

Reslizumab

(Cinqair®) Approved Active, FDA 2016-03-23

An interleukin-5 (IL-5) antagonist used to treat severe asthma.

CAS  241473-69-8

Research Code CDP-835; CEP-38072; CTx-55700; SCH-5570; SCH-55700; TRFK-5,

Anti-interleukin-5 monoclonal antibody – Celltech/Schering-Plough

Reslizumab was approved by the U.S. Food and Drug Administration (FDA) on March 23, 2016. It was developed and marketed as Cinqair® by Teva.

Reslizumab is an interleukin-5 antagonist, which binds to human IL-5 and prevents it from binding to the IL-5 receptor, thereby reducing eosinophilic inflammation. It is indicated for the maintenance treatment of patients with severe asthma in patients aged 18 years and older.

Cinqair® is available as injection for intravenous infusion, containing 100 mg of reslizumab in 10 mL solution in single-use vials. The recommended dose is 3 mg/kg once every four weeks.

  • Originator Celltech R&D; Schering-Plough
  • Developer Celltech R&D; Teva Pharmaceutical Industries
  • Class Antiasthmatics; Monoclonal antibodies
  • Mechanism of Action Interleukin 5 receptor antagonists
  • Orphan Drug Status Yes – Oesophagitis

 

  • 23 Mar 2016 Registered for Asthma in USA (IV) – First global approval
  • 04 Mar 2016 Pooled efficacy data from two phase III trials in Asthma presented at the 2016 Annual Meeting of the American Academy of Allergy, Asthma and Immunology (AAAAI-2016)
  • 10 Dec 2015 Preregistration for Asthma in Canada (IV)

 

Reslizumab (trade name Cinqair) is a humanized monoclonal antibody intended for the treatment of eosinophil-meditated inflammations of the airways, skin and gastrointestinal tract.[1] The FDA approved reslizumab for use with other asthma medicines for the maintenance treatment of severe asthma in patients aged 18 years and older on March 23, 2016. Cinqair is approved for patients who have a history of severe asthma attacks (exacerbations) despite receiving their current asthma medicines.[2]

Teva Announces FDA Acceptance of the Biologics License Application for Reslizumab

Investigational Biologic for the Treatment of Inadequately Controlled Asthma in Patients with Elevated Blood Eosinophils Accepted for Review

JERUSALEM–(BUSINESS WIRE)–Jun. 15, 2015– Teva Pharmaceutical Industries Ltd., (NYSE: TEVA) announced today that the U.S. Food and Drug Administration (FDA) has accepted for review the Biologics License Application (BLA) for reslizumab, the company’s investigational humanized monoclonal antibody (mAb) which targets interleukin-5 (IL-5), for the treatment of inadequately controlled asthma in adult and adolescent patients with elevated blood eosinophils, despite an inhaled corticosteroid (ICS)-based regimen.

“Despite currently available medicines, uncontrolled asthma remains a serious problem for patients, physicians and healthcare systems, highlighting the need for targeted new treatment options,” said Dr. Michael Hayden, President of Global R&D and Chief Scientific Officer at Teva Pharmaceutical Industries Ltd. “The reslizumab BLA filing acceptance represents a significant milestone for Teva as we work toward serving a specific asthma patient population that is defined by elevated blood eosinophil levels and inadequately controlled symptoms despite standard of care therapy. In clinical trials, patients treated with reslizumab showed significant reductions in the rate of asthma exacerbations and significant improvement in lung function. If approved, we believe reslizumab will serve as an important new targeted treatment option to achieve better asthma control for patients with eosinophil-mediated disease.”

The BLA for reslizumab includes data from Teva’s Phase III BREATH clinical trial program. The program consisted of four separate placebo-controlled Phase III trials involving more than 1,700 adult and adolescent asthma patients with elevated blood eosinophils, whose symptoms were inadequately controlled with inhaled corticosteroid-based therapies. Results from these studies demonstrated that reslizumab, in comparison to placebo, reduced asthma exacerbation rates by at least half and provided significant improvement in lung function and other secondary measures of asthma control when added to an existing ICS-based therapy. Common adverse events in the reslizumab treatment group were comparable to placebo and included worsening of asthma, nasopharyngitis, upper respiratory infections, sinusitis, influenza and headache. Two anaphylactic reactions were reported and resolved following medical treatment at the study site.

Results from the reslizumab BREATH program were recently presented at the American Thoracic Society 2015 Annual Meeting and the American Academy of Allergy, Asthma and Immunology 2015 Annual Meeting, in addition to being published in The Lancet Respiratory Medicine. The BLA for reslizumab has been accepted for filing by the FDA for standard review, with FDA Regulatory Action expected in March 2016.

About Reslizumab

Reslizumab is an investigational humanized monoclonal antibody which targets interleukin-5 (IL-5). IL-5 is a key cytokine involved in the maturation, recruitment, and activation of eosinophils, which are inflammatory white blood cells implicated in a number of diseases, such as asthma. Elevated levels of blood eosinophils are a risk factor for future asthma exacerbations. Reslizumab binds circulating IL-5 thereby preventing IL-5 from binding to its receptor.

About Asthma

Asthma is a chronic (long term) disease usually characterized by airway inflammation and narrowing of the airways, which can vary over time. Asthma may cause recurring periods of wheezing (a whistling sound when you breathe), chest tightness, shortness of breath and coughing that often occurs at night or early in the morning. Without appropriate treatment, asthma symptoms may become more severe and result in an asthma attack, which can lead to hospitalization and even death.

About Eosinophils

Eosinophils are a type of white blood cell that are present at elevated levels in the lungs and blood of many asthmatics. Evidence shows that eosinophils play an active role in the pathogenesis of the disease. IL-5 has been shown to play a crucial role in maturation, growth and activation of eosinophils. Increased levels of eosinophils in the sputum and blood have been shown to correlate with severity and frequency of asthma exacerbations.

About Teva

Teva Pharmaceutical Industries Ltd. (NYSE and TASE: TEVA) is a leading global pharmaceutical company that delivers high-quality, patient-centric healthcare solutions to millions of patients every day. Headquartered in Israel, Teva is the world’s largest generic medicines producer, leveraging its portfolio of more than 1,000 molecules to produce a wide range of generic products in nearly every therapeutic area. In specialty medicines, Teva has a world-leading position in innovative treatments for disorders of the central nervous system, including pain, as well as a strong portfolio of respiratory products. Teva integrates its generics and specialty capabilities in its global research and development division to create new ways of addressing unmet patient needs by combining drug development capabilities with devices, services and technologies. Teva’s net revenues in 2014 amounted to $20.3 billion. For more information, visit www.tevapharm.com.

USFDA

The U.S. Food and Drug Administration today approved Cinqair (reslizumab) for use with other asthma medicines for the maintenance treatment of severe asthma in patients aged 18 years and older. Cinqair is approved for patients who have a history of severe asthma attacks (exacerbations) despite receiving their current asthma medicines.

Asthma is a chronic disease that causes inflammation in the airways of the lungs. During an asthma attack, airways become narrow making it hard to breathe. Severe asthma attacks can lead to asthma-related hospitalizations because these attacks can be serious and even life-threatening. According to the Centers for Disease Control and Prevention, as of 2013, more than 22 million people in the U.S. have asthma, and there are more than 400,000 asthma-related hospitalizations each year.

“Health care providers and their patients with severe asthma now have another treatment option to consider when the disease is not well controlled by their current asthma therapies,” said Badrul Chowdhury, M.D., Ph.D., director of the Division of Pulmonary, Allergy, and Rheumatology Products in the FDA’s Center for Drug Evaluation and Research.

Cinqair is administered once every four weeks via intravenous infusion by a health care professional in a clinical setting prepared to manage anaphylaxis. Cinqair is a humanized interleukin-5 antagonist monoclonal antibody produced by recombinant DNA technology in murine myeloma non-secreting 0 (NS0) cells. Cinqair reduces severe asthma attacks by reducing the levels of blood eosinophils, a type of white blood cell that contributes to the development of asthma.

The safety and efficacy of Cinqair were established in four double-blind, randomized, placebo‑controlled trials in patients with severe asthma on currently available therapies. Cinqair or a placebo was administered to patients every four weeks as an add-on asthma treatment. Compared with placebo, patients with severe asthma receiving Cinqair had fewer asthma attacks, and a longer time to the first attack. In addition, treatment with Cinqair resulted in a significant improvement in lung function, as measured by the volume of air exhaled by patients in one second.

Cinqair can cause serious side effects including allergic (hypersensitivity) reactions. These reactions can be life-threatening. The most common side effects in clinical trials for Cinqair included anaphylaxis, cancer, and muscle pain.

Cinqair is made by Teva Pharmaceuticals in Frazer, Pennsylvania.

 

References

 

 

Reslizumab
Monoclonal antibody
Type Whole antibody
Source Humanized (from rat)
Target IL-5
Clinical data
Trade names Cinquil
Identifiers
ATC code R03DX08 (WHO)
ChemSpider none

/////////CDP-835,  CEP-38072,  CTx-55700,  SCH-5570,  SCH-55700,  TRFK-5, Reslizumab, Cinqair®, teva, interleukin-5 (IL-5) antagonist, severe asthma, FDA 2016, Orphan Drug StatuS

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: