AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER
Nov 122017
 

Inline images 1

Biovis PSA2000

Automated Particle Size Analysis System

Biovis PSA 2000 system designed to provide particle size and shape analysis with more than 70 measurements on size shape and color makes it a unique solution for R&D and QC applications in Pharmaceutical, Food processing, Paint , Ink Coating and many other applications. The 21 CFR Part 11 compliance module make it more preferred for the Manufacturing plants  working under USFDA guidelines. Report available on request, or download link available below, it  is as per the regulatory requirements.

For R&D the non FDA version of the software can provide huge amount of data which can be mined to help find more information about the particulate matter based on its size and shape thereby improve the Drug delivery, Process Engineering , process development etc…

Biovis PSA2000 is an automated particle size analysis system for comprehensive investigation of different types of dry or wet particulate matter such as fibres, emulsions, crystals, powders, spray droplets, or suspensions, etc.

– Rapid automated analysis of thousands of individual particles

– Detect particles as small as 0.5 micron

– Compliance to FDA 21 CFR Part 11 standards

– Custom built analysis routines to handle specific sample types

– Detect and classify particle types on the basis of size, shape, color

– Professional Analysis Report generation

 

The Biovis PSA 2000 system with Biovis Particle Plus Ver 5.3 has the following features

  • Reports with D10, D50, D90 values.
  • Number and Volume distribution charts
  • Administrator  driven Login Policies.
  • Powerful macros/methods for automatic detection of different types of samples to achieve repeatable results with different users for same samples.
  • Micro Image documentation with Electronic Signature as per 21 CFR Part II compliance guidelines.
  • Complete audit trail to trace every action in each experiment.

Departments that can benefit from Biovis PSA 2000 system are

  • Process development/ Process Engineering
  • Quality Control ( Finished Material/ Inward Raw Material)
  • Performance of finished product ( Aspect ratio /roundness factor helps better design of final product)
  • Research and Development

For more information please go through the weblink http://www.expertvisionlabs.com/BiovisPSA.html

Imaging Solutions

Bio-Science

BioScience application areas are turning out to be one of the leading consumers of digital imaging softwares. Quantitative analysis for images from microscopy is beneficial in Medical, Scientific and biological applications.
Image Analysis Software are used in the field of Pathology, MicroBiology, research & quality control of Medicine, Forensic sciences, etc.
Many of these fields require image processing techniques to enhance the Image before extracting relevant information from it. Characterization of minute details in the acquired image is essential in these scientific applications.

Biovis Image Plus

is perfectly suited for these applications and provides numerous functions for enhancement of Image and then obtaining morphometric, densitometry and stereological measurements.

Plant Sciences

The

Biovis PSM

– Plant Science Modules are a set of advanced solutions for a wide range of plant sciences applications. Biovis PSM is designed for Plant Pathology and Agronomy applications to provide solutions for Plant Leaf, Plant Root, Plant Seed analysis.
Whether for use in the lab, or for field level analysis, Biovis PSM is offered at different levels of flexibility and portability to the users.

Industrial Analysis

Industrial analysis requires a practical and efficient technique of studying metals and materials to understand their composition and behavior. Such Metallurgical analysis (metallography) by way of imaging softwares provides a fast and accurate method of estimating mechanical properties of materials based on their appearance. This helps to check and maintain that their product meets the required standard.
Microstructural image analysis is useful in Steel Industry, Metal Strength Analysis, manufacturing, automotive, quality control of materials, and for Metallurgist in material science applications.

Biovis Materials Plus

is aimed at providing solutions for these Material analysis requirements.

str10

Naveen Hegde

Regards

Naveen Hegde

Expert Vision Labs

H202, Ranjit Studio,

DP Road, Dadar East,

Mumbai 400014

India.

Tel:+91 22 6637 2739 / +91 22 6637 1470

Mobile: +91 93240 51848

Fax : +91 22 6637 2739

Website : www.expertvisionlabs.com

email : nhegde@expertvisionlabs.com

Expert Vision Labs

Expert Vision Labs has pioneered Image Analysis Technology in India and has focus into developing, a flexible line of highly cost effective and quality software driven products for Research and Industrial customers in India and across the globe.
Established in 1995, Expert Vision Labs has strived to specialize in providing complete solutions for computer based imaging and vision related applications. Have developed the

Biovis

image analysis product line for diverse applications in genetics, bioscience, material science and industrial applications.

Report available on request, or download  here is as per the regulatory requirements.
////////////

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Follow amcrasto on Twitter

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

Share
Nov 112017
 

str10

Axay Parmar

Axay Parmar

Founder at Synthesis with Catalysts Pvt. Ltd

str10

Synthesis with Catalysts Pt. Ltd. is a company started with an aim to produce chiral and achiral precious metal based catalysts on commercial scale in line with “Clean and Green India” and “Make in India” vision of Government of India. These catalysts have been developed to promote efficient, economical and environmentally benign processes for the target compounds being produced in aroma, fine chemicals and pharmaceutical industries. These catalysts and their intermediates are also extensively used in academic and industrial R&D centres across globe. In India these catalysts are currently imported at a very prohibitive cost, due to which their use is limited for want of funds. In this direction Synthesis with Catalysts Pvt. Ltd. is striving to make these products available to indigenously available at a very competitive price at small and bulk scale. We are also doing in-house research to optimize process parameters ofvarious organic transformations particularly asymmetric hydrogenation and isomerization reactionsfor customers as and when required.

For the list of our products please visit our wesitewww.synthesiswithcatalysts.com

ABOUT US

  • Our vision is to be the most respected catalyst manufacturing company in the country
  • Our goal is to help our customers:
  • to further improve their production methodologies
  • increase productivity,
  • develop new products with the intervention of catalysts to make the process green and clean
  • Highly selective catalysts for intended application
  • Competitive pricing with short delivery lead times
  • Custom product and process development

Activities:A

Manufacture of Homogeneous catalysts using metal ions viz. Rh, Pt, Ir, Pd, Ru, Co, and Mn

Manufacture of ligands and intermediates

Pharmaceutical, bulk drugs, API, aroma chemical, essential oil industries served

Focus on chiral chemistries

Gram to kilogram quantities

ASYMMETR

Some of the representative reactions are:

ASYMMETRIC/ CHEMOSELECTIVE HYDROGENATION CATALYSTS

str10

 

Statements

  • Catalysts are chiral metal complexes derived from a precious metal ion and chiral ligands
  • Ru used most frequently, Rh used in some cases to enhance chemo- and enantio- selectivity
  • Chiral ligands can be selected from variety of simple and substituted BINAP alone or in combination with chiral/achiral diamines
  • Suggested catalysts:
    • RuCl2[(S)-BINAP](dmf)n
    • RuCl2[(S)- tolBINAP][(S,S)-dpen]
    • (S)-XylBINAP/(S)-DAIPEN-Ru
    • (S)-XylBINAP/(S,S)-DPEN-Ru
    • RuCl2[(S)-tolBINAP](pica)
    • RuCl[(S,S)-TsDPEN](η6-p-cymene)
    • Ru(OTf)(TsDPEN)(p-cymene)
    • BINAP-Ru(II) dicarboxylate complexes

ENANTIOSELECTIVE EPOXIDATION / HKR / DKR

str10

 

Statements:

  • Transition metal complexes are used for chiral and non-chiral epoxidation of internal and prochiral olefins
  • The epoxides are important intermediates for host of industrially important products
  • In cases where epoxides are required in high optical purity, racemic epoxides can be subjected to Hydrolytic kinetic resolution (HKR), Aminolytic kinetic resolution (AKR), Dynamic kinetic resolutions (DKR)
  • Suggested catalysts:
    • Mn, Co, Cr, Al complexes of chiral SALEN ligands

ASYMMETRIC ISOMERIZATION

 

str10

Double bond migration reactions

str10

Statements:

  • Rh-catalyzed asymmetric isomerization of allylic amines into the corresponding enamines is one of the most revered industrial organic transformation in asymmetric catalysis
  • It has accommodated a wide range of substrates and is a key step in the industrial production of menthol
  • Other industrially important isomerization is migration of terminal double bond to produce selectively trans-internal olefins
  • Commercially important products like isoeugenol and trans-anetheole are produced by these transformations
  • Suggested catalysts:
    • Ru(acac)3
    • RuHCl(CO)(PPh3)3
    • Rh/Pd complexes

Tree of popular asymmetric organic transformations

 

str10

 

At Chiral India event in Mumbai where our technical director Dr. Abdi Is a speaker. With Basu Agarwal

Basu Agarwal

Basu Agarwal

CEO at Synthesis with Catalysts Pvt Ltd
Phone 9999972051 (Mobile)
Email
IM basu.ag@gmail.com (Google Talk)
Chiral India 2017, Nov7-8 Ramada plaza palm grove, Juhu, Mumbai, India

str10

////////

 

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Follow amcrasto on Twitter

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

Share
Nov 102017
 
Image result for ukraine flag animated

Image result for National Taras Shevchenko University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine

Ukraine

original image

 

Abstract

The synthesis of monocyclic, spirocyclic and fused bicyclic secondary amines bearing a gem-difluorocyclopropane moiety via difluorocyclopropanation of unsaturated N-Boc derivatives using the trifluoromethyl(trimethyl)silane/sodium iodide [CF3SiMe3-NaI] system is described. The relative order of the substrate reactivity is established. It is shown that for the reactive alkenes the standard reaction conditions can be used, whereas for the substrates with low reactivity, slow addition of the Ruppert–Prakash reagent is necessary.

Gram-Scale Synthesis of Amines Bearing a gem-Difluorocyclopropane Moiety

Authors., Pavel S. Nosik,

DOI: 10.1002/adsc.201700857

Pavel S. Nosik,a.b Andrii O. Gerasov,a Rodion O. Boiko,a Eduard Rusanov,b Sergey V. Ryabukhin,c Oleksandr O. Grygorenko,c * Dmitriy M. Volochnyukb

a Spectrum Info Ltd., Life Chemicals Inc., Murmanska Street 5, Kyiv 02094, Ukraine

b Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine

c National Taras Shevchenko University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine

Image result for National Taras Shevchenko University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine

* Corresponding author. E-mail: gregor@univ.kiev.ua.

 

Oleksandr Grygorenko at National Taras Shevchenko University of Kyiv

Oleksandr Grygorenko

Ph D
Professor (Associate)
National Taras Shevchenko University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine
National Taras Shevchenko University of Kyiv

Image result for Dmitriy M. Volochnyuk

Dmitriy M. Volochnyuk

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine

Dmitriy M. Volochnyuk was born in 1980 in Irpen, Kyiv region, Ukraine. He graduated from Kyiv State Taras Shevchenko University in 2002 and was awarded his M.S. degree in chemistry. He received his Ph.D. in organic chemistry in 2005 from the Institute of Organic Chemistry, National Academy of Sciences of Ukraine under the supervision of Dr. A. Kostyuk for research on the chemistry of enamines. At present, he divides his time between the Institute of Organic Chemisty, as Deputy Head of Organophosphorus Department and Senior Researcher, and Enamine Ltd (Kyiv, Ukraine), as Director of Chemistry. His main scientific interests are related to fluoroorganic, organophosphorus, heterocyclic and combinatorial chemistry, and multistep organic synthesis. He is a coauthor of more than 80 papers

institute-of-organic-chemstry-nanu

 

  • Given that the incorporation of small fluorinated fragments in drug-like molecules continues to rise, this has created an onus on the synthetic community to provide robust, scalable routes to these molecules of interest. Grygorenko and co-workers have reported on a synthesis of amines featuring a gem-difluorocyclopropane moiety using the readily available Ruppert–Prakash reagent ( Adv. Synth. Catal. 201710.1002/adsc.201700857).
  • Evaluating a series of olefins under the standard reaction conditions in refluxing THF indicated that only the most reactive olefins (gem-disubstituted) provided good yields of the desired cyclopropane, while other solvents proved to be ineffective. Conducting a control experiment omitting the substrate demonstrated that the key issue herein was competitive decomposition of the TMSCF3 to a series of gaseous byproducts under the reaction conditions.
  • Whereas continuous flow provides a potential to mitigate against this, the current report demonstrated that slow addition of the reagent to the reaction mixture also provided a practical solution to this problem.
  • Employing this approach enabled not only excellent conversions and yields to be realized but also allowed reactivity trends to be identified. In general, gem-disubstituted are the most reactive with the trend correlating with steric hindrance.
  • For other classes of olefins, electronics are the major factor with the ability of the substituents to stabilize a positive charge in the transition state consistent with a nonsynchronous formation of the two sigma bonds in the cycloaddition the key consideration. The removal of the Boc-protecting group under standard acidic conditions provided the amines as their hydrochloride salts.
  • Eduard Rusanov at Institute of Organic Chemistry National Academy of Sciences of Ukraine
  • Eduard Rusanov

    PhD
    Head of Crystallographic Lab./Director of the crystallographic facility Nat. Acad. of Sci. Ukraine ‘Single Mjlecule Crystallography’ at IOC
    Institute of Organic Chemistry… · DEPARTMENT OF PHYSICOCHEMICAL INVESTIGATIONS

STR2STR1

tert-Butyl 1,1-difluoro-6-azaspiro[2.5]octane-6-carboxylate (10a):

Yield: 66.7 g (91%) (Method A); off-white crystalline powder: mp 46–48 8C;

1H NMR (CDCl3 , 400 MHz): d= 3.57–3.42 (m, 2H), 3.40–3.27 (m, 2H), 1.66–1.47 (m, 4H), 1.44 (s, J=2.3 Hz, 9H), 1.08 (t, J=8.3 Hz, 2H);

13C NMR (CDCl3, 101 MHz): d=154.2, 115.4 (t, J=288.1 Hz), 79.3, 42.8, 28.4, 28.1, 26.8 (t, J=10.0 Hz), 21.0 (t, J=10.1 Hz);

19F NMR (CDCl3 , 376 MHz): d=@140.6;

MS (EI): m/z= 247 (M+ ), 192 (M+@t-Bu), 174 (M+@t-BuO), 147 (M+@Boc), 127 (M+@Boc@HF);

Anal. calcd. for C12H19F2NO2 : C 58.29, H 7.74, N 5.66; found: C 58.49, H 8.02, N 5.30.

//////////////

Follow amcrasto on Twitter

Share
Nov 092017
 

STR3

2-Phenylfuran

17113-33-6 cas

STR1 STR2

2-Phenylfuran (3v) [15]: According to the general procedure I and purification by column chromatography (100% PE) yielded 3v (35.9 mg, 50%) and the general procedure II yielded 3s (35.1 mg, 49%) as a white solid . 1 H NMR (400 MHz, CDCl3) δ 7.68-7.66 (m 2H), 7.46 (s, 1H), 7.40-7.35 (m, 2H), 7.26-7.23 (m, 1H), 6.645-6.639 (m, 1H), 6.461-6.457 (m, 1H). LRMS (ESI) calcd for [M+H]+ C10H9O 145.1, found 145.1.

15 Zhou, C.-Y.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325.

Visible-Light Photoredox in Homolytic Aromatic Substitution: Direct Arylation of Arenes with Aryl Halides

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 RenAi Road, Suzhou, Jiangsu 215123, China
Org. Lett.201315 (11), pp 2664–2667
DOI: 10.1021/ol400946k

Abstract

Abstract Image

Direct arylation of unactivated arenes or heteroarenes with aryl halides could be carried out in the presence of potassium tert-butoxide and dimethyl sulfoxide under visible-light irradiation. Ir(ppy)3was found to be an effective photoredox catalyst for this reaction. The reactions of aryl iodides occurred at room temperature. Elevated temperature was required for aryl bromides. Homolytic aromatic substitution was proposed to be the operative reaction pathway.

Predicts

1H NMR

STR1

13C NMR

STR2

//////////////////

http://pubs.acs.org/doi/10.1021/ol400946k

more info

Open Babel bond-line chemical structure with annotated hydrogens.<br>Click to toggle size.

<sup>1</sup>H NMR spectrum of C<sub>10</sub>H<sub>8</sub>O<sub></sub> in CDCL3 at 400 MHz.<br>Click to toggle size.

Shifts

Index Name Shift (ppm)
19 H7 6.582
1 H1 7.655
5 H5 7.655
15 H6 6.885
11 H2 7.415
7 H4 7.415
9 H3 7.362
17 H8 7.471

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Share
Nov 092017
 

Zhong-Xia WANG

STR1

 

STR1

N,N-dimethyl-4-biphenylamine

Molecular Formula, C14H15N
Molecular Weight, 197.28
CAS Number, 1137-79-7

(1) N,N-dimethyl-[1,1′-biphenyl]-4-amine (3a) 5,6

Elute: EtOAc/petroleum ether: 1/100 (v/v), white solid, yield 97.8 mg (99%).

1H NMR (400 MHz, CDCl3): δ 7.56 (d, J = 7.8 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.30–7.21 (m, 1H), 6.81 (d, J = 8.8 Hz, 2H), 3.00 (s, 6H).

13C NMR (101 MHz, CDCl3): δ 150.09, 141.34, 129.37, 128.78, 127.84, 126.43, 126.12, 112.90, 40.97.

5 Yang, X.; Wang, Z.-X. Organometallics 2014, 33, 5863.

(6) Stibingerova, I.; Voltrova, S.; Kocova, S.; Lindale, M.; Srogl, J. Org. Lett. 2016, 18, 312.

STR1 STR2

 

Transition-Metal-Free Cross-Coupling of Aryl and Heteroaryl Thiols with Arylzinc Reagents

Bo Yang and Zhong-Xia Wang* 
 CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
 Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
Org. Lett., Article ASAP
DOI: 10.1021/acs.orglett.7b03145

Abstract

Abstract Image

Cross-coupling of (hetero)arylthiols with arylzinc reagents via C–S cleavage was performed under transition-metal-free conditions. The reaction displays a wide scope of substrates and high functional-group tolerance. Electron-rich and -deficient (hetero)arylthiols and arylzinc reagents can be employed in this transformation. Mg2+ and Li+ ions were demonstrated to facilitate the reaction.

In summary, we developed a transition-metal-free coupling reaction of (hetero)arylthiols with arylzinc reagents to form bi(hetero)aryls. The reaction exhibited wide substrate scope and good compatibility of functional groups. Electron-rich and -poor aryl or heteroaryl thiols can be converted. Various arylzinc reagents, including electron-rich and electron-poor reagents, can be employed as the coupling partners. Preliminary mechanistic studies suggest a nucleophilic aromatic substitution pathway, and Mg2+ and Li+ ions play important roles in the process of reaction. This study provides an example of S2– as a leaving group in an aromatic system and an effective methodology for the synthesis of bi(hetero)aryls including pharmaceutical molecules without transition-metal impurities.

Zhong-Xia WANG

Department: Department of Chemistry
Mailing Address:
Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, 230026, PR China
Postal Code:
230026
Phone:
+86-551-63603043
Fax:
Homepage:
http://chem.ustc.edu.cn/szdw_16/bd/201210/t20121023_142877.html
Zhong-Xia Wang is a professor in the Department of Chemistry at the University of Science and Technology 
of China. He received his BS degree (1983) and MS degree (1986) from Nankai University, 
and PhD degree (1997) from the University of Sussex, UK. Since July 1986, Wang has been working 
at the University of Science and Technology of China (USTC) successively as Assistant, 
Lecturer, Associate Professor, and Professor. From Aug. 1993 to Oct. 1996, he pursued his doctoral 
studies at the University of Sussex, UK, and from Oct. 1999 to Oct. 2000, he was a Research Associate 
at the Chinese University of Hong Kong.

 学 系
Department of Chemistry

Predicts

STR1

STR1

////////////

http://pubs.acs.org/doi/10.1021/acs.orglett.7b03145

 

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Follow amcrasto on Twitter

Share
Nov 082017
 

 

Med. Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7MD00449D, Review Article
K. P. Rakesh, C. S. Shantharam, M. B. Sridhara, H. M. Manukumar, Hua-Li Qin
The benzisoxazole analogs represent one of the privileged structures in medicinal chemistry and there has been an increasing number of studies on benzisoxazole-containing compounds.

Benzisoxazole: a privileged scaffold for medicinal chemistry

 

Abstract

The benzisoxazole analogs represent one of the privileged structures in medicinal chemistry and there has been an increasing number of studies on benzisoxazole-containing compounds. The unique benzisoxazole scaffold also exhibits an impressive potential as antimicrobial, anticancer, anti-inflammatory, anti-glycation agents and so on. This review examines the state of the art in medicinal chemistry as it relates to the comprehensive and general summary of the different benzisoxazole analogs, their use as starting building blocks of multifarious architectures on scales sufficient to drive human drug trials. The number of reports describing benzisoxazole-containing highly active compounds leads to the expectation that this scaffold will further emerge as a potential candidate in the field of drug discovery.

Hua-Li Qin

Dr. Hua-Li Qin Ph. D 2009
qinhuali@bu.edu

Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, PR China

  • Wuhan University of Technology

Hua-Li joined the Panek group in 2005.

C. S. Shantharam at Pooja Bhagavat Memorial Mahajana P.G Centre

C. S. Shantharam

M.Sc., Ph.D
Assistant professor
Pooja Bhagavat Memorial Mahaja… , Mysore · Department of Chemistry
Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru-570016, India
Image result for Department of Chemistry, Pooja Bhagavat Memorial Mahajana Education Centre, Mysore-570016, India
Image result for Department of Chemistry, Pooja Bhagavat Memorial Mahajana Education Centre, Mysore-570016, India

Hua-Li Qin

 

Manukumar H M at University of Mysore

Manukumar H M

Master of Science
Research Scholar

 

////////////Benzisoxazole, scaffold, medicinal chemistry

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Share
Nov 072017
 

 

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC01874F, Communication
Amrendra Kumar, Ramanand, Narender Tadigoppula
An efficient and metal-free method has been developed for the synthesis of polysubstituted pyrrole derivatives with combination of sodium dodecyl sulphate (SDS) and Triton X-100 surfactants using water as a solvent at room temperature in 2-6 h and under microwave conditions (10 min) with good to excellent yields.

Metal-free synthesis of polysubstituted pyrroles using surfactants in aqueous medium

Image result for Narender Tadigoppula

Dr. Narender Tadigoppula

Principal Scientist
Medicinal & Process Chemistry
Central Drug Research Institute
India

Dr. Narender Tadigoppula is currently principal scientist in the department of medicine chemistry central drug research institute. He published more than 30 research articles. His major major research activities are identification of biologically active lead molecules through activity guided fraction and isolation work on the medicinal plants, marine organisms and microorganisms for metabolic diseases (hyperglycemia, dyslipidemia), parasitic diseases (leishmania and malaria), cancer etc., and chemical transformation of natural products of biological importance to improve their potency. We synthesize these biologically active lead molecules and their analogues in our laboratory. We have identified several lead molecules from the Indian medicinal plants for various disease areas as described below and further work is in progress to develop natural products based drugs.

Abstract

An efficient and metal-free method has been developed for the synthesis of polysubstituted pyrrole derivatives via intermolecular cycloaddition of substituted 1-phenyl-2-(phenylamino)-ethan-1-one/1-phenyl-2-(phenylamino)-propan-1-ones/2-((4-methoxyphenyl)amino)-1-(thiophen-2-yl)ethan-1-one/1-(furan-2-yl)-2-((4-methoxyphenyl)amino)ethan-1-one/1-(benzofuran-3-yl)-2-((4-methoxyphenyl)amino)ethan-1-one and dialkyl acetylene dicarboxylate/ethylbutynoate in the presence of a combination of sodium dodecyl sulphate (SDS) and Triton X-100 surfactants using water as a solvent at room temperature in 2–6 h under microwave conditions (10 min) with good to excellent yields.

Diethyl-1-(4-methoxyphenyl)-4-(p-tolyl)-1H-pyrrole 2,3dicarboxylate

STR1

white solid, yield 77%, mp 128-130 ;

1H NMR (400 MHz, CDCl3) δ 7.38(d, J = 8.2,2H), 7.31 (d, J = 7.9, 2H), 7.21 (d, J = 7.12, 2H), 6.99-6.96 (m, 3H), 4.31 (q, J = 7.2 Hz, 2H), 4.12 (q, J = 7.6Hz, 2H), 3.88 (s, 3H), 2.38 (s, 3H), 1.31 (t, J = 7.9Hz, 3H), 1.19 (t, J = 7.5Hz, 3H) ;

13C NMR (100 MHz, CDCl3) δ 166.3, 159.9, 149.0, 148.8, 136.7, 132.6, 130.3, 129.2, 127.6, 125.8, 124.5, 123.4, 121.5, 118.3, 110.5, 110.2, 61.2, 60.7, 56.0, 21.1, 14.0, 13.9.

IR (KBr) ṽ (cm-1): 2981.9, 1717.9, 1514.1, 1419.2, 1381.3, 1245.0, 1175.9, 1226.7, 1043.6, 835.7, 755.3, 663.

HRESIMS: m/zcalcd for [M+H]+ C24H26NO5 408.1805 found 408.1845.

STR1 STR2

 

/////////////

O=C(OCC)c2c(c(cn2c1ccc(OC)cc1)c3ccc(C)cc3)C(=O)OCC

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Share
Nov 032017
 

Image result for Kalpana C. Maheria sv

1-benzyl-2, 4, 5-triphenyl-1H-imidazole

STR1 STR2 str3

. 1-Benzyl-2,4,5-triphenyl-1H-imidazole (5a, n = 1).

Off-white solid; m.p.: 160–162 °C;

anal. calcd. for C28H22N2: C, 87.01, H, 5.74, N, 7.25%. Found: C, 87.13, H, 5.70, N, 7.19%;

UV (λmax, ethanol) = 280 nm;

FT-IR (KBr, cm−1 ): 3060 (C–H stretch), 3031, 1600 (CN), 1497, 1483, 1447 (CC), 1352 (C–N stretch), 769, 697 (C–H band);

1 H NMR (400 MHz, DMSO): 5.16 (s, 2H, CH2), 6.74–7.67 (m, 20H, Ar–H) ppm;

13C NMR (100 MHz, DMSO): 47.6 (CH2, C8), 125.1 (CHarom, C28), 126.0 (CHarom, C26), 126.2 (CHarom, C30), 126.4 (CHarom, C11), 127.0 (CHarom, C15), 127.1 (CHarom, C16), 127.7 (CHarom, C20), 128.0 (CHarom, C21), 128.1 (CHarom, C25), 128.4 (CHarom, C13), 128.5 (CHarom, C18), 128.6 (CHarom, C27), 128.8 (C1), 128.8 (CHarom, C12), 128.9 (CHarom, C14), 130.1 (CHarom, C17), 130.3 (CHarom, C19), 130.5 (CHarom, C22), 130.7 (CHarom, C24), 131.0 (CHarom, C29), 134.4 (CHarom, C9), 135.1 (CHarom, C23), 136.8 (CHarom, C7), 137.0 (CHarom, C10), 137.2 (CHarom, C6), 145.4 (C2), 147.0 (C4) ppm;

MS: m/z = 387.5 (M + H)+

An efficient green protocol for the synthesis of tetra-substituted imidazoles catalyzed by zeolite BEA: effect of surface acidity and polarity of zeolite

*Corresponding authors

Abstract

In the present study, the catalytic activity of various medium (H-ZSM-5) and large pore (H-BEA, H-Y, H-MOR) zeolites were studied as solid acid catalysts. The zeolite H-BEA is found to be an efficient catalyst for the synthesis of 1-benzyl-2,4,5-triphenyl-1H-imidazoles through one-pot, 4-component reaction (4-CR) between benzil, NH4OAc, substituted aromatic aldehydes and benzyl amine. The hydrophobicity, Si/Al ratio and acidic properties of zeolite BEA were well improved by controlled dealumination. The synthesized materials were characterized by various characterization techniques such as XRD, ICP-OES, BET, NH3-TPD, FT-IR, pyridine FT-IR, 27Al and 1H MAS NMR. It has been observed that the dealumination of the parent zeolite H-BEA (12) results in the enhanced strength of Brønsted acidity up to a certain Si/Al ratio which is attributed to the inductive effect of Lewis acidic EFAl species, leading to the higher activity of the zeolite BEA (15) catalyst towards the synthesis of 1-benzyl-2,4,5-triphenyl-1H-imidazoles under thermal solvent-free conditions with good to excellent yields. Using the present catalytic synthetic protocol, diverse tetra-substituted imidazoles, which are among the significant biologically active scaffolds, were synthesized in high yield within a shorter reaction time. The effect of polarity, surface acidity and extra framework Al species of the catalysts has been well demonstrated by means of pyridine FT-IR, and 27Al and 1H MAS NMR. The solvent-free synthetic protocol makes the process environmentally benign and economically viable.

Graphical abstract: An efficient green protocol for the synthesis of tetra-substituted imidazoles catalyzed by zeolite BEA: effect of surface acidity and polarity of zeolite
STR1
STR1
Image result for S. V. National Institute of Technology, Ichchhanath, Surat
Image result for S. V. National Institute of Technology, Ichchhanath, Surat
Image result for S. V. National Institute of Technology, Ichchhanath, Surat
S. V. National Institute of Technology, Ichchhanath, Surat
Image result for Mandvi Science College, Mandvi – 394160, Surat, India
Image result for Mandvi Science College, Mandvi – 394160, Surat, India
Mandvi Science College, Mandvi – 394160, Surat, India

////////

DISCLAIMER

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent
Share
Oct 312017
 

 

Green Chem., 2017, 19,5163-5171
DOI: 10.1039/C7GC02190A, Paper
David K. Leahy, Eric M. Simmons, Victor Hung, Jason T. Sweeney, William F. Fleming, Melanie Miller
A process greenness scorecard has been developed that provides a comprehensive assessment of greenness aspects not encompassed by mass-based metrics, including environmental, health and safety impacts, in order to facilitate the design of greener, more benign and inherently safer processes.
The content of this RSS Feed (c) The Royal Society of Chemistry

Melanie Miller

Melanie Miller

Executive Director, Pharmaceutical Development at Bristol Myers Squibb

Head of API Operations, Pharmaceutical Development

Bristol Myers Squibb

New Brunswick, New Jersey

Leads manufacturing operations to deliver small molecule active pharmaceutical ingredients for investigational medicines. Scope includes all R&D API manufacturing operations within a global external and internal manufacturing network supporting delivery of small molecules, antibody-drug conjugates, peptides and oligonucleotides.

Design and evolution of the BMS process greenness scorecard

 

Jason Sweeney

Associate Director at Bristol-Myers Squibb

Abstract

An accurate and comprehensive assessment of the environmental, health and safety impacts of a chemical process is critical to the design and implementation of greener, more benign and inherently safer processes. Over the past 15 years at BMS, we have developed a Process Greenness Scorecard to capture and analyse a number of metrics and attributes for each step in the synthetic sequence used to produce an API. This manuscript describes the design and evolution of the scoring methodology and implementation of the resulting scorecard, from an initial Excel-based tool to the current web-based format.

Graphical abstract: Design and evolution of the BMS process greenness scorecard
David Leahy
David K. Leahy
https://www.linkedin.com/in/davidkleahy/
Introduction
“The ability to meet the needs of the present without compromising the ability of future generations to meet their needs” The definition of sustainable development from the United Nations World Commission on Environment and Development has indeed resonated with corporate leaders across the globe.1 This is evident by the wealth of public-facing sustainability goals that Fortune 500 companies have committed to over the last decade. Within the context of the pharmaceutical industry, it is green chemistry2 that provides the key to environmentally-responsible pharmaceutical manufacturing3 , and practitioners have been rewarded with enormous impacts to their triple bottom line.4
Green chemistry is more cost-effective, safer for employees, and better for the environment. Corporate sustainability has been characterized as a key driver for innovation, which is essential for a firm to succeed.5 As part of our program in green chemistry, we anticipated that a tool that could assess the ‘greenness’ of our chemical processes would spark the innovation of our scientists, by pointing out deficient areas, prompting focus on these areas, and providing quantitative evidence that their improvements had the desired impact.6
A number of mass-based metrics are available to assess the greenness of a chemical process,7,8 with E factor (kg of waste/kg of product)9 and Process Mass Intensity (PMI = kg of inputs/kg of product)10 being most widely utilized within the pharmaceutical industry.7,8,10 We firmly believe that such metrics are very important, but we also recognized that they ignore many key green chemistry principles, most importantly safety.7,11,12
While important strides have been made in the development of quantitative methods to compare the environmental impact of chemical syntheses,13 most notably though Life Cycle Assessment (LCA)14 and the FLASC tool,15 as well as the recently introduced Green Aspiration Level (GAL),7,12 metrics that assess the safety and health hazards of chemical processes and products are lacking in comparison.16,17
In this article, we describe the strategy we have taken at Bristol-Myers Squibb to expand on existing mass-based approaches to include a comprehensive assessment of the important facets of greenness not encompassed by typical process metrics, such as E factor and PMI, to develop a Process Greenness scoring methodology that is appropriate for the assessment of the chemical processes used on scale for the synthesis of smallmolecule active pharmaceutical ingredients (APIs) and intermediates.18,19

Eric Simmons

Eric Simmons

Senior Research Investigator II at Bristol-Myers Squibb
Conclusions
The BMS process greenness scorecard is an important tool for scientists to help guide decisions made during API process development. It serves as the key methodology we use to assess the environmental and safety performance of our processes to manufacture compounds in development. This greenness score provides a useful and quantitative method, complimentary to mass based metrics such as PMI and derived from the 12 principles of green chemistry. A key advantage of this assessment is that it also considers the inherent safety of a process, both from a worker exposure and process hazards perspective. These are key green chemistry considerations that are not captured when evaluating a process using mass-based metrics alone. This assessment is especially important when facing complex decisions involving tradeoffs between improved efficiency versus enhanced process safety. While this tool is currently only suitable for use in evaluating small molecules, efforts are underway to expand this methodology to assess other important therapeutic modalities, including synthetic peptides, oligonucleotides, antibody-drug conjugates, and biologics and will be reported in due course.

William Fleming

William Fleming

Director, Head of Safety, Global EHS&S

Bristol-Myers Squibb

 Image result for Chemical and Synthetic Development, Bristol-Myers Squibb, New Brunswick, USA
Chemical and Synthetic Development, Bristol-Myers Squibb, New Brunswick, USA

////////////////Bristol-Myers Squibb, bms, green

ref http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C7GC02190A?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

 

more…………..

A data-driven strategy for predicting greenness scores, rationally comparing synthetic routes and benchmarking PMI outcomes for the synthesis of molecules in the pharmaceutical industry

Jun Li Eric M. Simmons and Martin D. Eastgate *
Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903, USA. E-mail: martin.eastgate@bms.com

Apixaban: Our final case study is apixaban (45), an orally bioavailable inhibitor of blood coagulation factor Xa, developed for thrombotic diseases and commercialized as Eliquis (Scheme 6).17 This highly optimized process evolved through multiple rounds of development and the data reported is taken from the validation campaign, thus ready for product launch. The actual cumulative PMI for the overall process was 197, which is significantly below the lower end of the 95% confidence interval for the predicted cumulative PMI (Fig. 14). In essence, it is lower than 99.9% of the similar chemistries executed on scale at different development stages. This is the one of a few commercial assets in our current database, and while obviously efficient, this score should be viewed with the perspective that most of the data available to us in this proof of concept study is in the development phase, and thus encompasses a wide range of optimization levels. However, in order to compare more globally, more data, from more companies, and across all phases of development is needed.

image file: c6gc02359b-s6.tif
Scheme 6 Apixaban synthetic route in validation campaign.
Fig. 14 Predicted apixaban cumulative PMI with mean 366 and 95% CI between 261 and 480.

image file: c6gc02359b-f14.tif

 

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Share
Oct 262017
 

 

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC02118F, Critical Review
G. Fiorani, A. Perosa, M. Selva
Green upgrading of renewables via methylations and carboxymethylations with non-toxic dimethyl carbonate (DMC).

Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables

 Author affiliations

Giulia Fiorani

Postdoctoral Research Fellow presso University of Oxford
Dr. Fiorani earned her PhD in Chemical Sciences from the University of Rome “Tor Vergata” (2010) on synthesis and applications of ionic liquids. After several post-doctoral experiences (University of Padua, Italy 2010-2012, Ca’ Foscari University of Venice 2012-2013), Giulia was awarded a Marie Curie Intra-European Fellow in 2014 at ICIQ (Institute of Chemical Research of Catalonia, Tarragona, Spain) working under the supervision of Prof. Arjan W. Kleij  on the preparation of cyclic organic carbonates from CO2 and terpene based oxiranes. Giulia joined the Williams group in 2016 and is working on renewable based polymers.

Abstract

Dimethyl carbonate (DMC) is an environmentally sustainable compound which can be used efficiently for the upgrading of several promising renewables including glycerol, triglycerides, fatty acids, polysaccharides, sugar-derived platform molecules and lignin-based phenolic compounds. This review showcases a thorough overview of the main reactions where DMC acts as a methylating and/or methoxycarbonylating agent for the transformation of small bio-based molecules as well as for the synthesis of biopolymers. All processes exemplify genuine green archetypes since they couple innocuous reactants of renewable origin with non-toxic DMC. Each section of the review provides a detailed overview on reaction conditions and scope of the investigated reactions, and discusses the rationale behind the choice of catalyst(s) and the proposed mechanisms. Criticism and comments have been put forward on the pros and cons of the described methods and their perspectives, as well as on those studies which still require follow-ups and more in-depth analyses.

STR1STR2

Image result for Giulia Fiorani oxford

Giulia Fiorani

Ph. D. in Chemical Sciences
Post Doctoral Research Assistant
Research experience
  • Sep 2016–present
    Post Doctoral Research Assistant
    University of Oxford · Department of Chemistry · Prof. Charlotte K. Williams
    United Kingdom
    Polymer chemistry and catalysis applied to polymers preparation.
  • Mar 2016–Sep 2016
    Post Doctoral Research Assistant
    Imperial College London · Department of Materials · Prof. Charlotte K. Williams
    United Kingdom · London, England
    Polymer chemistry and catalysis applied to polymers preparation.
  • Mar 2014–Feb 2016
    Marie Curie Intra-European Fellow
    ICIQ Institute of Chemical Research of Catalonia · Prof. Arjan W. Kleij
    Spain
    Novel applications of renewable based molecules for the preparation of cyclic carbonate and polycarbonates (FP7-PEOPLE-2013-IEF, project RENOVACARB, Grant Agreement no. 622587).
  • Apr 2012–Oct 2013
    Post Doctoral Research Assistant
    Università Ca’ Foscari Venezia · Department of Molecular Science and Nanosystems · Prof. Maurizio Selva, Prof. Alvise Benedetti
    Italy
    Synthesis and characterization of luminescent Ionic Liquids.
  • Jan 2011–Feb 2012
    Post Doctoral Research Assistant
    Italian National Research Council · Institute on Membrane Technology ITM · Prof. Marcella Bonchio, Dr Alberto Figoli
    Italy · Rome
    Project BioNexGen – development of a new generation of membrane reactors.
  • Jan 2010–Dec 2010
    Research Assistant
    University of Padova · Department of Chemical Sciences · Dr Mauro Carraro
    Italy · Padova
    Hybrid nanostructures organized by hybrid ligands for the preparation of new functional materials.

Teaching experience

  • Sep 2016–Oct 2016
    Visiting Scholar
    Università degli Studi di Sassari · Department of Chemistry and Pharmacy
    Italy · Sassari
    10 hour course on terpene chemistry for PhD students.

Education

  • Nov 2006–Mar 2010
    University of Rome Tor Vergata
    Chemical Sciences · PhD
    Italy
  • Oct 2004–Jul 2006
    University of Rome Tor Vergata
    Chemistry · Master of Science
    Italy
  • Sep 2001–Oct 2004
    University of Rome Tor Vergata
    Chemistry · BSc
    Italy

Other

  • Languages

    English, Italian, Spanish

  • Scientific Societies

    Member of the Italian Chemical Society since 2007.

 

PEROSA Alvise

Qualifica Professore Associato
Telefono 041 234 8958
E-mail alvise@unive.it 
Fax 041 234 8979
Web www.unive.it/persone/alvise (scheda personale)
http://venus.unive.it/alvise/
Struttura Dipartimento di Scienze Molecolari e Nanosistemi
Sito web struttura: http://www.unive.it/dsmn 
Sede: Campus scientifico via Torino
Research team Environmental technology and green economy
Research team Science of complex economic, human and natural systems
Incarichi Delegato per il Dipartimento all’Internazionalizzazion

logo unive

Currently: Associate professor of Organic Chemistry with tenure.

Department of Molecular Sciences and Nanosystems, University Ca’ Foscari Venice.

 

Born in Venice in 1965. Married to Paola, two children: Alberto (2000) and Marta (2002).

 

  • Career

– 2011, was offered the senior position as Associate professor of Chemistry with Tenure at UMAss Boston.

– 2005-2014 Assistant professor of Organic Chemistry with tenure (SSD CHIM/06), University Ca’ Foscari Venice.

– 2007 Visiting scientist, University of Sydney.

– 1996-2005 Post-doctoral researcher University Ca’ Foscari Venice.

 

  • Education

– 1996 Ph.D. in Chemistry, Case Western Reserve University, Cleveland OH, USA.

– 1992 Laurea in Industrial Chemistry @ University Ca’ Foscari Venice.

 

  • Fellowships

– 2007 Endeavour Research Fellow (Austrlian Government, Department of Education, Employment and Workplace Relations) at the University of Sydney.

– 1992-1996 Fulbright Fellow (U.S. Department of State, International Educational Exchange Program) at Case Western Reserve University.

– 1993 CNR Research Fellow (1993) at Case Western Reserve University, Cleveland OH, USA.

 

  • Awards

– Ca’ Foscari Research Prize (2014, category Advanced Research).

– Royal Society of Chemistry International Journal Grants Awards (2007, 2009).

– CNR prize for research (1994).

– Outstanding teaching award CWRU (1993).

– Prize for the Laurea thesis from the Consorzio Venezia Ricerche (1992).

 

  • Editorial Board memberships

– Advisory Board of the journal “Green Chemistry” (Royal Society of Chemistry, UK).

– Editorial Advisory Board of the journal “ACS Sustainable Chemistry and Engineering” (American Chemical Society, USA).

 

  • Training and editorial activities.

– Scientific coordinator and organizer of the Summer School on Green Chemistry from 1998 to 2006 (funded by the European Commission, UNESCO, and NATO).

– Editor of the volume “Methods and Reagents for Green Chemistry” Wiley Interscience 2007.

– Editor of “Green Nanoscience”, volume 8 of the 12 volume set of the “Handbook of Green Chemistry” P. Anastas Ed., Wiley-VCH 2011.

– Author of over 60 scientific papers and chapters and of one patent in the field of organic chsmistry, with emphasis on green chemistry. Hirsch index (Scopus, Feb. 2014) = 21.

 

  • Invited talks

– Green chemistry applied to the upgrading of bio-based chemicals: towards sustainable chemical production. University of Sydney, 19 March 2014.

– Sustainable (Chemical) Solutions, Rethinking Nature in Contemporary Japan, Università Ca’ Foscari, Venezia, 25-26 February 2013

– Carbonate based ionic liquids and beyond, Green Solvents Conference, Frankfurt am Main, Dechema Gesellschaft fur Chemische Technik und Biotechnologie e. V., pp. 27, Green Solvents for Synthesis, Boppard, 8-10 Ottobre 2012

– Chemicals e Fuels da Fonti Rinnovabili, Bioforum. Biotecnologie: dove scienza e impresa si incontrano, Milano, ITER, vol. VII Edizione, Bioforum, Confindustria Venezia, 24.02.2011

– Green Chemistry for Sustainability: Teaching ionic liquids new tricks & A breath of oxygen for bio-based chemicals., Slovenian-Italian conference on Materials and Technologies for Sustainable Growth, Ajdovscina, Slovenia, 4-6 Maggio 2011

– Benign molecular design, WORKSHOP ON ECOPHARMACOVIGILANCE, Verona, 26-27 Marzo 2009

– Not merely solvents: task specific ionic liquids made by green syntheses, COIL-3 Pre-symposium workshop, Cairns, Australia, 31/05/2009

– Multiphase catalysis: a tool for green organic synthesis, Royal Australian Chemical Institute NSW Organic Chemistry Group, 28th Annual One-Day Symposium, MacQuarie University, Sydney, Australia, 5 December 2007

– Catalytic Reactions in Liquid Multiphasic Systems The acronym talk, INTAS Project on POPs, Moscow, 12-14 Giugno 2005

– Catalytic reactions in liquid multiphasic systems, Convegno: Eurogreenpol – First European Summer School on Green Chemistry of Polymers, Iasi – Rumania, 21-27 Agosto 2005

– Multiphase hydrodehalogenation reactions, RWTH Aachen – Germany, 12 Febbraio 2003

– Mechanism and Synthetic Applications of the Multiphase Catalytic Systems, International Workshop on Hazardous Halo-Aromatic Pollutants: Detoxification and Analysis, Venezia, 14-16 Maggio 2002

– The multiphase catalytic hydrodehalogenation of haloaromatics, European Summer School on Green Chemistry, Venezia, 10-15 September 2001

 

  • Academic committees

– Quality assurance board of Ca’ Foscari University

– Teaching council of the International College, Ca’ Foscari merit school.

– Academic Council of Venice International University VIU.

– Delegate for international relations of the Department of Molecular Sciences and Nanosystems.

– Scientific board of Edizioni Ca’ Foscari – Digital Publishing.

– Research committee of the Department of Molecular Sciences and Nanosystems.

– Teaching board of the Doctorate in Chemical Sciences (2012-2014).

– Teaching board of the degree course Bio- and Nanomaterials science and Technology.

– Erasmus selection committee.

– Overseas selection committee

– Post-doctoral selection committees.

 

  • Referee, reviewer, and examiner for:

– Valutazione della Qualità della Ricerca (VQR), ANVUR

– Progetti di Rilevante Interesse Nazionale (PRIN), MIUR

– American Chemical Society Petroleum Research Fund (USA).

– Ph.D. Theses, University of Nottingham (UK) and University of Sydney (Aus).

– European Science Foundation

– Journals published by: Royal Society of Chemistry, American Chemical Society, Wiley, Elsevier, Springer, IUPAC

 

  • Funded projects

– Coordinator of a Cooperlink project funded by the Italian Ministry for Education, University and Research, 2011, 12 months, entitled “Joint PhD between Università Ca’ Foscari and the University of Sydney: integration of experiment and theory towards the green synthesis of self-assemblying materials and the use of renewable resources”.

– Participant in the Project of Relevant National Interest (PRIN) “Green organic syntheses mediated by new catalytic systems”, 2010, 24 months.

– Tutor of a PhD scholarship funded by the Regione Veneto through the European Social Fund, entitled “Organic syntheses of active principles and chemicals for the pharmaceutical industry using green solvents “ 2009-2011, 36 months.

– Principal Scientist of a post-doctoral fellowship funded by the Regione Veneto through the European Social Fund entitled “New reduced environmental impact chemical synthesesfor the preparation of monomers for advanced polymers, April 2012, 12 months.

– Principal Scientist of a post-doctoral fellowship funded by the Regione Veneto through the European Social Fund entitled “Environmentally compatible chemical syntheses of fluorinated monomers for advanced materials” April 2013, 12 months.

– Principal Scientist of a post-doctoral fellowship funded by the Regione Veneto through the European Social Fund entitled “Valorisation of renewable substrates from biomass, such as glycerol and its derivatives, using green chemistry” April 2014, 12 Months

– Principal Scientist of a research contract between the chemical company Aussachem (Santandrà di Povegliano, TV), entitled: “Green Chemistry for the valorisation of glycerol and of its derivatives: new ecofriendly products” December 2013.

 

  • International collaborations and networks

– Teaching and research collaboration with the University of Sydney, School of Chemistry Laboratory for Advanced Catalysis and Sustainability prof. Thomas Maschmeyer. A joint PhD program in Chemistry was established and is currently running. Up to date 5 students (3 outgoing, 2 incoming) have benefited from this agreement The first joint PhD has been awarded in December 2013 (Marina Gottardo). Four joint publications have already been produced, and others are in preparation.

– Research collaboration with the Queen’s University of Belfast, Queen’s University Ionic Liquids Laboratory, prof. Kenneth R. Seddon, for the exchange of Erasmus students who carry out research towards their MS thesis. Currently the student Riccardo Zabeo is in Belfast w research towards his thesis, tutor dr. Perosa. Previously, the PhD student Marco Noè (tutor Perosa) spent 4 months in Belfast carrying out research that was published on an international journal.

– In the framework of a scientific collaboration with prof. Janet Scott of the Centre for Sustainable Chemical Technologies of the University of Bath, an Erasmus Mundus Joint Doctorate project entitled “Bio-Based Chemicals and Materials” was submitted in 2011 and was evaluated positively albeit not funded. Nonetheless the collaboration has already produced a joint publication.

– Summer School on Green Chemistry Network. Following the 8 editions of the “Summer school on Green Chemistry” (1998-2005) coordinated and organized by the applicant, a Green Chemistry Network was initiated that involves the following institutions: RWTH-Aachen, QUB-QUILL Belfast, UNSW-Sydney, ARKEMA-France, University of Groningen-NL, Dow Europe-CH, Universite de Poitiers, ETH-Zurich, TU-Darmstadt, Universidad Politecnica de Valencia, Delft University of Technology, TU-Munchen.

– Since 1993 Alvise Perosa is a member of the American Chemical Society.

 

  • MoU’s and International agreements

– Alvise Perosa started the Joint PhD degree in Chemistry between the University of Sydney and the Università Ca’ Foscari Venezia.

– Erasmus, Alvise Perosa is the contact person for the following Erasmus agreements: Universitat Autonoma de Barcelona, Universidad Rey Juan Carlos, Universidad Rovira i Virgili,UNIVERSITE D’AVIGNON ET DES PAYS DE VAUCLUSE, ARISTOTLE UNIVERSITY THESSALONIKI, Queen’s University of Belfast.

 

  • Academic tutoring

– Marco Noè (PhD 2009-11: 24° cycle)

– Jessica N. G. Stanley (PhD cotutelle University of Sydney, 2012-2014)

– Alessio Caretto (PhD 2012-14: 27° cycle)

– Manuela Facchin (PhD 2014-16: 29° cycle)

– Tutor if BSc and MSc level students of the degree corse in Sustainable Chemistry and Technologies and, and of the MSc degree course in Science and Technolgy of Bio- and Nanomaterials.

 

  • Teaching

– 1992-94, Case Western Reserve University, Chemistry BS: Organic Chemistry 1 Laboratory (teaching assistant award in 1993).

– 1997-2000, Università Ca’ Foscari Venezia, degree course in Environmental Sciences: Organic Chemistry Exercises.

– 1997-2000, Università Ca’ Foscari Venezia, degree course in Industrial Chemistry: Organic Chemistry 1 & 2 Laboratory, Industrial Chemistry 2 Exercises, Organic Chemistry 1 (part-time students) and Advanced Organic Chemistry.

– 2006-09, Università Ca’ Foscari Venezia, degree course in Chemical Sciences and Technologies for Cultural Heritage Conservation and Restoration: Organic Chemistry Laboratory.

– 2006-07, Università Ca’ Foscari Venezia, degree course in Chemistry, Industrial Chemistry, Materials Chemistry, Environmental Sciences: Organic Chemistry 1 and Laboratory for part-time students.

– 2005-06, 2011-12, 2012-13, 2013-14: Università Ca’ Foscari Venezia, degree course in Chemistry and in sustainable Chemical Technologies: Organic Chemistry 2 and Laboratory.

– 2011-12, Università Ca’ Foscari Venezia, degree course in Chemistry and in sustainable Chemical Technologies: Green Organic synthesis Laboratory.

– 2012-13, 2013-14 Università Ca’ Foscari Venezia, MS degree course in Bio e Nanomaterials: Colloids and Interfaces.

– 2013-14 Università Ca’ Foscari Venezia, Graduate course in Organic syntheses from renewable building blocks.

SELVA Maurizio 

Qualifica Professore Ordinario
Telefono 041 234 8687
E-mail selva@unive.it 
Fax 041 234 8979
Web www.unive.it/persone/selva (scheda personale)
Struttura Dipartimento di Scienze Molecolari e Nanosistemi
Sito web struttura: http://www.unive.it/dsmn 
Sede: Campus scientifico via Torino

http://www.unive.it/data/persone/5591976/pubb_tipo

/////////////////

http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C7GC02118F?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: