AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Worlddrugtracker, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his PhD from ICT ,1991, Mumbai, India, in Organic chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA as ADVISOR earlier GLENMARK LS Research centre as consultant,Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Prior to joining Glenmark, he worked with major multinationals like Hoechst Marion Roussel, now sSanofi, Searle India ltd, now Rpg lifesciences, etc. he is now helping millions, has million hits on google on all organic chemistry websites. His New Drug Approvals, Green Chemistry International, Eurekamoments in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 year tenure, good knowledge of IPM, GMP, Regulatory aspects, he has several international drug patents published worldwide . He gas good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, polymorphism etc He suffered a paralytic stroke in dec 2007 and is bound to a wheelchair, this seems to have injected feul in him to help chemists around the world, he is more active than before and is pushing boundaries, he has one lakh connections on all networking sites, He makes himself available to all, contact him on +91 9323115463, amcrasto@gmail.com

Potential of Homogeneous Pd Catalyst Separation by Ceramic Membranes. Application to Downstream and Continuous Flow Processes

 SYNTHESIS  Comments Off on Potential of Homogeneous Pd Catalyst Separation by Ceramic Membranes. Application to Downstream and Continuous Flow Processes
May 072016
 
Abstract Image

Successful chemical production of molecules while simultaneously reducing the environmental impact of the process relies not only on more efficient reactions but also on developments in reactor and separation technology. Recent decades have also witnessed a significant growth in industrial interest in solvent-based separations using membranes stable to organic solvents. The incorporation of membranes into a chemical process can be via a simple downstream processing method or an integrated reaction membrane method. This paper deals with homogeneous organometallic catalyzed reactions and probes the separation of a number of readily available palladium complexes from reaction mixtures with highly stable ceramic membranes. A number of different processing methods, namely, online, at-line, and off-line are compared and contrasted. A high rejection of Palladium species and consequently very low palladium contamination of reaction products with a single organic solvent nanofiltration (OSN) step has been demonstrated.

Potential of Homogeneous Pd Catalyst Separation by Ceramic Membranes. Application to Downstream and Continuous Flow Processes

VITO (Flemish Institute for Technological Research), Separation and Conversion Technology, Boeretang 200, B-2400 Mol, Belgium
Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00418

http://pubs.acs.org/doi/abs/10.1021/acs.oprd.5b00418

 

 

 

//////Potential, Homogeneous Pd Catalyst Separation, Ceramic Membranes, Application, Downstream, Continuous Flow Processes

Share

Development of a Safe and Robust Process for the Large-Scale Preparation of a Vinyl Bromide from a Ketone Using a (PhO)3P/Br2-Derived Reagent

 SYNTHESIS  Comments Off on Development of a Safe and Robust Process for the Large-Scale Preparation of a Vinyl Bromide from a Ketone Using a (PhO)3P/Br2-Derived Reagent
May 072016
 
Abstract Image

The large-scale synthesis of ethyl 4-bromocyclohex-3-enecarboxyalate, using a mild brominating reagent derived from triphenyl phosphite and bromine, is reported. The development and comparison of both continuous and batch processes are described.

A modified addition sequence was developed based on the knowledge garnered from flow-processing, resulting in a safe and efficient process for the in situ generation of the unstable active reagent and its immediate reaction with the ketone in a batch mode process.

Development of a Safe and Robust Process for the Large-Scale Preparation of a Vinyl Bromide from a Ketone Using a (PhO)3P/Br2-Derived Reagent

Chemical and Synthetic Development, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore-560099, India
Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00100

http://pubs.acs.org/doi/abs/10.1021/acs.oprd.6b00100

 

Authors

Nachiket Likhite

Nachiket Likhite

Senior Research Investigator at Bristol-Myers Squibb Biocon R&D Center (BBRC)

KIRAN SHAW…OWNER

/////Development, Safe and Robust Process, Large-Scale Preparation,  Vinyl Bromide,  Ketone,  (PhO)3P/Br2-Derived Reagent

Share

A New Antibiotic (E)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one, from University Of Notre Dame

 PRECLINICAL, Uncategorized  Comments Off on A New Antibiotic (E)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one, from University Of Notre Dame
May 062016
 

SCHEMBL16024086.png

STR1

 

(E)-3-(3-Carboxyphenyl)-2-(4-ethynylstyryl)quinazolin-4(3H)-one

(E)-3-(2-(4-Cyanostyryl)-4-Oxoquinazolin-3(4h)-Yl)benzoic Acid;

1624273-22-8  CAS

NA SALT 1624273-21-7 CAS

INNOVATORS

University Of Notre Dame

Mayland Chang, Shahriar Mobashery, Renee BOULEY INVENTORS

 

C24H15N3O3
Molecular Weight: 393.3942 g/mol
 1H NMR (500 MHz, DMSO-d6) δ 4.32 (s, 1H), 6.34 (d, J = 15.55 Hz, 1H), 7.35 (d, J = 8.37 Hz, 2H), 7.44 (d, J = 8.37 Hz, 2H), 7.49 (d, J = 7.58 Hz, 1H), 7.55 (t, J = 7.98 Hz, 1H), 7.58 (t, J = 7.78 Hz, 1H), 7.78 (d, J = 8.17 Hz, 1H), 7.87 (m, 3H), 8.05 (d, J = 7.78 Hz, 1H), 8.13 (d, J = 7.98 Hz, 1H).
13C NMR (126 MHz, DMSO-d6) δ 82.70, 83.24, 120.66, 121.04, 122.84, 126.51, 126.81, 127.31, 127.83, 129.98, 130.12, 132.33, 132.39, 133.49, 134.90, 135.21, 137.21, 137.99, 147.36, 151.04, 161.37, 166.58.
HRMS (m/z): [M + H]+, calcd for C25H17N2O3, 393.1234; found, 393.1250. HRMS (m/z): [M + Na]+, calcd for C25H16N2NaO3, 415.1053; found, 415.1054.
The emergence of resistance to antibiotics over the past few decades has created a state of crisis in the treatment of bacterial infections.Over the years, β-lactams were the antibiotics of choice for treatment of S. aureus infections. However, these agents faced obsolescence with the emergence of methicillin-resistant S. aureus (MRSA). Presently, vancomycin, daptomycin, linezolid, or ceftaroline are used for treatment of MRSA infections, although only linezolid can be dosed orally. Resistance to all four has emerged. Thus, new anti-MRSA antibiotics are sought, especially agents that are orally bioavailable.  a new antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)one, with potent activity against S. aureus, including MRSA. We document that quinazolinones of our design are inhibitors of cell-wall biosynthesis in S. aureus and do so by binding to dd-transpeptidases involved in cross-linking of the cell wall.  quinazolinones possess activity in vivo and are orally bioavailable. This antibiotic holds promise in treating difficult infections by MRSA.
STR1

PAPER

Journal of the American Chemical Society (2015), 137(5), 1738-1741.

http://pubs.acs.org/doi/abs/10.1021/jacs.5b00056

Discovery of Antibiotic (E)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
Department of Crystallography and Structural Biology, Instituto de Química-Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
§ Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
J. Am. Chem. Soc., 2015, 137 (5), pp 1738–1741
DOI: 10.1021/jacs.5b00056
Publication Date (Web): January 28, 2015
Copyright © 2015 American Chemical Society

Abstract

Abstract Image

In the face of the clinical challenge posed by resistant bacteria, the present needs for novel classes of antibiotics are genuine. In silico docking and screening, followed by chemical synthesis of a library of quinazolinones, led to the discovery of (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)one (compound 2) as an antibiotic effective in vivo against methicillin-resistant Staphylococcus aureus (MRSA). This antibiotic impairs cell-wall biosynthesis as documented by functional assays, showing binding of 2 to penicillin-binding protein (PBP) 2a. We document that the antibiotic also inhibits PBP1 of S. aureus, indicating a broad targeting of structurally similar PBPs by this antibiotic. This class of antibiotics holds promise in fighting MRSA infections.

PATENT

WO 2014138302

http://www.google.com/patents/WO2014138302A1?cl=en

Staphylococcus aureus is a common bacterium found in moist areas of the body and skin. S. aureus can also grow as a biofilm, representing the leading cause of infection after implantation of medical devices. Approximately 29% (78.9 million) of the US population is colonized in the nose with S. aureus, of which 1.5% (4.1 million) is methicillin-resistant S. aureus (MRSA). In 2005, 478,000 people in the US were hospitalized with a S. aureus infection, of these 278,000 were MRSA infections, resulting in 19,000 deaths. MRSA infections have been increasing from 2% of S. aureus infections in intensive care units in 1974 to 64% in 2004, although more recent data report stabilization. Approximately 14 million outpatient visits occur every year in the US for suspected S. aureus skin and soft tissue infections. About 76% of these infections are caused by S. aureus, of which 78% are due to MRSA, for an overall rate of 59%. Spread of MRSA is not limited to nosocomial (hospital-acquired) infections, as they are also found in community-acquired infections. Over the years, β-lactams were antibiotics of choice in treatment of S. aureus infections. However, these agents faced obsolescence with the emergence of

MRSA. Presently, vancomycin, daptomycin or linezolid are agents for treatment of MRSA infections, although only linezolid can be dosed orally. Resistance to all three has emerged. Thus, new anti-MRSA therapeutic strategies are needed, especially agents that are orally bioavailable.

Clinical resistance to β-lactam antibiotics by MRSA has its basis predominantly in acquisition of the mecA gene, which encodes penicillin-binding protein 2a (PBP2a). PBP2a, a cell-wall DD- transpeptidase, is refractory to inhibition by essentially all commercially available β-lactams (ceftaroline is an exception), antibiotics that irreversibly acylate the active-site serine of typical PBPs. PBPs catalyze biosynthesis of the bacterial cell wall, which is essential for the survival of the bacterium. Accordingly, new ηοη-β-lactam antibiotics that inhibit PBP2a are needed to combat drug-resistant strains of bacteria. SUMMARY

Staphylococcus aureus is responsible for a number of human diseases, including skin and soft tissue infections. Annually, 292,000 hospitalizations in the US are due to S. aureus infections, of which 126,000 are related to methicillin-resistant Staphylococcus aureus (MRSA), resulting in 19,000 deaths. A novel structural class of antibiotics has been discovered and is described herein. A lead compound in this class shows high in vitro potency against Gram-positive bacteria comparable to those of linezolid and superior to vancomycin (both considered gold standards) and shows excellent in vivo activity in mouse models of MRSA infection.

The invention thus provides a novel class of ηοη-β-lactam antibiotics, the quinazolinones, which inhibit PBP2a by an unprecedented mechanism of targeting both its allosteric and active sites. This inhibition leads to the impairment of the formation of cell wall in living bacteria. The quinazolinones described herein are effective as anti-MRSA agents both in vitro and in vivo. Furthermore, they exhibit activity against other Gram-positive bacteria. The quinazolinones have anti-MRSA activity by themselves. However, these compounds synergize with β-lactam antibiotics. The use of a combination of a quinazolinone with a β-lactam antibiotic can revive the clinical use of β-lactam antibacterial therapy in treatment of MRSA infections. The invention provides a new class of quinazolinone antibiotics, optionally in combination with other antibacterial agents, for the therapeutic treatment of methicillin- resistant Staphylococcus aureus and other bacteria.

The quinazolinone compounds described herein can be prepared using standard synthetic techniques known to those of skill in the art. Examples of such techniques are described by Khajavi et al. (J. Chem. Res. (S), 1997, 286-287) and Mosley et al. (J. Med. Chem. 2010, 53, 5476-5490). A general preparatory scheme for preparing the compounds described herein, for example, compounds of Formula

Figure imgf000030_0001
Figure imgf000031_0001

wherein each of the variables are as defined for one or more of the formulas described herein, such as Formula (A).

EXAMPLES

Example 1. Compound Preparation

Chemistry. Organic reagents and solvents were purchased from Sigma- Aldrich. lH and 13C NMR spectra were recorded on a Varian INOVA-500. High-resolution mass spectra were obtained using a Bruker micrOTOF/Q2 mass spectrometer.

Figure imgf000034_0001

2-Methyl-4H-benzo[</| [l,3]oxazin-4-one (3). Anthranilic acid (20 g, 146 mmol) was dissolved in triethyl orthoacetate (45 mL, 245 mmol) and refluxed for 2 h. The reaction mixture was cooled on ice for 4 h to crystallize the intermediate. The resulting crystals were filtered and washed with hexanes to give 3 (17 g, 72% yield). lH NMR (500 MHz, CDC13) δ 2.47 (s, 3H), 7.50 (t, J= 7.38 Hz, 1H), 7.54 (d, J = 7.98 Hz, 1H), 7.80 (t, J= 7.18 Hz, 1H), 8.18 (d, J= 7.78 Hz, 1H). 13C NMR (126 MHz, CDCI3) δ 21.59, 1 16.84, 126.59, 128.42, 128.66, 136.77, 146.61, 159.89, 160.45. HRMS (m/z): [M + H]+, calcd for C9H8NO2, 162.0550; found , 162.0555.

2-Methyl-3-(3-carboxyphenyl)-quinazolin-4(3//)-one (4). Compound 3 (2 g, 12.4 mmol) and 3- aminophenol (1.7 g, 12.4 mmol) were suspended in glacial acetic acid (8 mL, 140 mmol), and dissolved upon heating. The reaction was refluxed for 5 h, at which point 5 mL water was added to the cooled reaction mixture. The resulting precipitate was filtered and washed with water, followed by cold ethanol and hexane to give 4 (3.19 g, 92% yield). lH (500 MHz, DMSO-d6) δ 2.87 (s, 3H), 7.52 (t, J= 7.38 Hz, 1H), 7.66-7.73 (m, 3H), 7.84 (t, J= 7.38 Hz, 1H), 8.01 (s, 1H), 8.09 (t, J= 7.58 Hz, 2H). 13C NMR (126 MHz, DMSO-de) δ 24.13, 120.48, 126.32, 126.47, 126.72, 129.52, 129.83, 130.01, 132.40, 133.07, 134.67, 138.18, 147.37, 154.13, 161.44, 166.58. HRMS (m/z): [M + H]+, calcd for C16H13N2O3 ,

281.0921 ; found, 281.0917.

Sodium (£)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one (2). Compound 4 (1.0 g, 3.6 mmol) and 4-formylbenzonitrile (0.56 g, 4.3 mmol) were suspended in glacial acetic acid (5 mL, 87 mmol), a suspension that dissolved upon heating. The reaction was refluxed for 18 h and 5 mL water was added to the cooled reaction mixture. The resulting precipitate was filtered and washed with water, followed by cold ethanol and hexanes to afford the carboxylic acid (0.77g, 75% yield). HRMS (m/z): [M + H]+, calcd for C24H16N3O3, 394.1 186; found 394.1214. The carboxylic acid (0.45 g, 1.1 mmol) was dissolved in hot ethanol, to which sodium 2-ethylhexanoate (0.28 g, 1.7 mmol) was added. The reaction mixture was stirred on ice for 2 h. The precipitate was filtered and washed with cold ethanol. The product was obtained by dissolving the precipitate in about 5 mL of water and subsequent lyophilization of the solution to give 2 as the sodium salt (0.4 g, 85% yield).

¾ NMR (500 MHz, DMSO- de) δ 6.47 (d, J= 15.55 Hz, 1H), 7.59 (m, 3H), 7.74 (d, J= 5.38 Hz, 2H), 7.79 (m, 3H), 7.91 (m, 2H), 8.05 (s, 1H), 8.14 (d, J= 7.78 Hz, 2H).

13C NMR (126 MHz, DMSO-de) δ 11 1.56, 1 18.61, 120.76, 123.42, 126.50, 127.01, 127.35, 128.26, 129.99, 130.06, 130.12, 132.33, 132.83, 133.46, 134.89, 136.95, 137.03, 139.25, 147.21, 150.74, 161.25, 166.52.

HRMS (m/z): [M + H]+, calcd for C24Hi5N3NaO3, 416.1006; found, 416.0987.

 

 

 

PAPER

http://pubs.acs.org/doi/full/10.1021/acs.jmedchem.6b00372

Structure–Activity Relationship for the 4(3H)-Quinazolinone Antibacterials

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
J. Med. Chem., Article ASAP
DOI: 10.1021/acs.jmedchem.6b00372
Publication Date (Web): April 18, 2016
Copyright © 2016 American Chemical Society
*S.M.: e-mail, mobashery@nd.edu; phone, 574-631-2933., *M.C.: e-mail, mchang@nd.edu; phone, 574-631-2965.
ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

 

Abstract Image

We recently reported on the discovery of a novel antibacterial (2) with a 4(3H)-quinazolinone core. This discovery was made by in silico screening of 1.2 million compounds for binding to a penicillin-binding protein and the subsequent demonstration of antibacterial activity againstStaphylococcus aureus. The first structure–activity relationship for this antibacterial scaffold is explored in this report with evaluation of 77 variants of the structural class. Eleven promising compounds were further evaluated for in vitro toxicity, pharmacokinetics, and efficacy in a mouse peritonitis model of infection, which led to the discovery of compound 27. This new quinazolinone has potent activity against methicillin-resistant (MRSA) strains, low clearance, oral bioavailability and shows efficacy in a mouse neutropenic thigh infection model.

NMR

STR1

STR1

INVENTORS

Renee Bouley

Renee Bouley selected to receive prestigious ACS Predoctoral Fellowship

Renee Bouley

Renee Bouley, a third year graduate student in the Department of Chemistry and Biochemistry, has been selected to receive a prestigious American Chemical Society (ACS) Division of Medicinal Chemistry Predoctoral Fellowship.  Bouley is one of only four recipients chosen for the 2013-2014 cycle.

This award supports doctoral candidates working in the area of medicinal chemistry who have demonstrated superior achievements as graduate students and who show potential for future work as independent investigators. These fellowships have been awarded annually since 1991 and include one year stipend support and an invitation to present the fellow’s research results at a special awards session at the ACS National Meeting.

Bouley’s work, conducted under the advisement of Shahriar Mobashery, Navari Family Professor in Life Sciences, and Mayland Chang, Research Professor and Director of the Chemistry-Biochemistry-Biology Interface (CBBI) Program, centers around the discovery of a new class of antibiotics that are selective against staphylococcal species of bacteria, including hard-to-treat methicillin-resistant Staphylococcus aureus (MRSA).  She has already identified a class of compounds that has in vitro activity against bacteria and demonstrated efficacy in mice. Bouley spent three months in 2012 in the laboratory of Prof. Juan Hermoso at Consejo Superior de Investigaciones Cientificas in Madrid, Spain, where she solved the crystal structure of the lead compound in complex with its target protein. Her studies have shown an unprecedented mechanism of action that opens opportunities for clinical resurrection of β-lactam antibiotics in combination with the new antibiotics. Bouley’s work during her fellowship tenure will explore structural analogs of these compounds with the goal of optimizing their potency in vivo and improving their drug-like properties.

Bouley is already the recipient of a National Institutes of Health Ruth L. Kirschstein National Research Service Award – CBBI (Chemistry-Biochemistry-Biology Interface) Program, a CBBI Research Internship Award, and an American Heart Association Predoctoral Fellowship (declined)………..https://www.linkedin.com/in/renee-bouley-43243215

University of Notre Dame

MAYLAND CHANG

http://chemistry.nd.edu/people/mayland-chang/

MAYLAND CHANG

  • Research Professor; Director, Chemistry-Biochemistry-Biology Interface (CBBI) Program
  • Office: 247 NSH
  • Phone: (574) 631-2965

Dr. Chang obtained B.S. degrees in biological sciences and chemistry from the University of Southern California, and a Ph.D. in chemistry from the University of Chicago.  Subsequently, she conducted postdoctoral research at Columbia University as a National Institutes of Health postdoctoral fellow.  She joined the faculty of the University of Notre Dame in 2003.  Previously, Dr. Chang was Chief Operating Officer of University Research Network, Inc., Senior Scientist with Pharmacia Corporation, and Senior Chemist at Dow Chemical Company.  She has characterized the ADME properties of numerous drugs, as well as prepared NDAs, INDs, Investigator’s Brochures, product development plans, and candidate drug evaluations.

Shahriar Mobashery

Shahriar Mobashery

Shahriar Mobashery

Navari Professor at University of Notre Dame

The Mobashery research program integrates computation, biochemistry, molecular biology, and the organic synthesis of medically important molecules. Bringing together these different disciplines is required to produce both scientific and medical advances for very difficult, but critically important clinical problems.

http://chemistry.nd.edu/people/shahriar-mobashery/

https://www.linkedin.com/in/shahriar-mobashery-71b67b4b

/////// 1624273-22-8, Antibiotic,  (E)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one, methicillin-resistant S. aureus, MRSA, 1624273-21-7, PRECLINICAL

O=C(O)c1cc(ccc1)N3C(=Nc2ccccc2C3=O)/C=C/c4ccc(C#N)cc4

Share

Sun Pharma and Merck & Co. Inc. Enter into Licensing Agreement for Tildrakizumab

 Uncategorized  Comments Off on Sun Pharma and Merck & Co. Inc. Enter into Licensing Agreement for Tildrakizumab
May 052016
 

Tildrakizumab (MK-3222)

Company Merck & Co. Inc.
Description Anti-IL-23 antibody
Molecular Target Interleukin-23 (IL-23)
Mechanism of Action Antibody
Therapeutic Modality Biologic: Antibody
Latest Stage of Development Phase III
Standard Indication Psoriasis
Indication Details Treat moderate to severe chronic plaque psoriasis
Regulatory Designation
Partner Sun Pharmaceutical Industries Ltd.

 

 

 

Tildrakizumab is a monoclonal antibody designed for the treatment of immunologically mediated inflammatory disorders.[1]

Tildrakizumab was designed to block interleukin-23, a cytokine that plays an important role in managing the immune system and autoimmune disease. Originally developed by Schering-Plough, this drug is now part of Merck‘s clinical program, following that company’s acquisition of Schering-Plough.

Sun Pharmaceutical acquired worldwide rights to tildrakizumab for use in all human indications from Merck in exchange for an upfront payment of U.S. $80 million. Upon product approval, Sun Pharmaceutical will be responsible for regulatory activities, including subsequent submissions, pharmacovigilance, post approval studies, manufacturing and commercialization of the approved product. [2]

As of March 2014, the drug was in phase III clinical trials for plaque psoriasis. The two trials will enroll a total of nearly 2000 patients, and preliminary results are expected in June, 2015. [3][4]

References

 

http://clinicaltrials.gov/ct2/show/NCT01722331?term=SCH-900222&phase=2&fund=2&rank=2

 

Sun Pharma and Merck & Co. Inc. Enter into Licensing Agreement for Tildrakizumab, MK 3222

WHITEHOUSE STATION, N.J., and MUMBAI, India, Wednesday, September 17, 2014 (BUSINESS WIRE) – Merck & Co., Inc., (NYSE:MRK), known as MSD outside the United States and Canada, and Sun Pharmaceutical Industries Ltd. (Reuters: SUN.BO, Bloomberg: SUNP IN, NSE: SUNPHARMA, BSE: 524715) through their respective subsidiaries, today announced an exclusive worldwide licensing agreement for Merck’s investigational therapeutic antibody candidate, tildrakizumab, (MK-3222), which is currently being evaluated in Phase 3 registration trials for the treatment of chronic plaque psoriasis, a skin ailment.

Under terms of the agreement, Sun Pharma will acquire worldwide rights to tildrakizumab for use in all human indications from Merck in exchange for an upfront payment of U.S. $80 million. Merck will continue all clinical development and regulatory activities, which will be funded by Sun Pharma. Upon product approval, Sun Pharma will be responsible for regulatory activities, including subsequent submissions, pharmacovigilance, post approval studies, manufacturing and commercialization of the approved product. Merck is eligible to receive undisclosed payments associated with regulatory (including product approval) and sales milestones, as well as tiered royalties ranging from mid-single digit through teen percentage rates on sales.

“Consistent with our previously announced global initiative to sharpen our commercial and R&D focus, including prioritizing our late stage pipeline candidates, we are pleased to enter into this agreement with Sun Pharma to help realize the potential of tildrakizumab for patients with chronic plaque psoriasis,” said Iain D. Dukes, Ph.D., senior vice president, Business Development and Licensing, Merck Research Laboratories.

“Sun Pharma is very pleased to enter into this collaboration with Merck, a recognized leader in the field of inflammatory/immunology therapies, for this late-stage candidate for chronic plaque psoriasis,” said Kirti Ganorkar, senior vice president, Business Development, Sun Pharma. “This collaboration is a part of our strategy towards building our pipeline of innovative dermatology products in a market with strong growth potential.”

The transaction is subject to customary closing conditions, including the requirements under the Hart Scott-Rodino Antitrust Improvements Act.

About Tildrakizumab

Tildrakizumab is an investigational humanized, anti-IL-23p19 monoclonal antibody that binds specifically to IL-23p19 and is therefore designed to selectively block the cytokine IL-23. Human genetics suggest that inhibiting IL-23 is effective for treating inflammatory conditions. In clinical studies for the treatment of chronic plaque psoriasis, tildrakizumab demonstrates efficacy in blocking inflammation by blocking IL-23. Other potential indications, which may be evaluated in future, include psoriatic arthritis and Crohn’s Disease.

Further details of the Phase 3 clinical trials can be found at: http://clinicaltrials.gov

About Merck

Today’s Merck is a global healthcare leader working to help the world be well. Merck is known as MSD outside the United States and Canada. Through our prescription medicines, vaccines, biologic therapies, and consumer care and animal health products, we work with customers and operate in more than 140 countries to deliver innovative health solutions. We also demonstrate our commitment to increasing access to healthcare through far-reaching policies, programs and partnerships. For more information, visit www.merck.com and connect with us on Twitter, Facebook and YouTube.

About Sun Pharma

Established in 1983, listed since 1994 and headquartered in India, Sun Pharmaceutical Industries Ltd. (Reuters: SUN.BO, Bloomberg: SUNP IN, NSE: SUNPHARMA, BSE: 524715) is an international specialty pharmaceutical company with over 75% sales from global markets. It manufactures and markets a large basket of pharmaceutical formulations as branded generics as well as generics in US, India and several other markets across the world. For the year ending March 2014, overall revenues were at US$2.7 billion, of which US contributed US$1.6 billion. In India, the company is a leader in niche therapy areas of psychiatry, neurology, cardiology, nephrology, gastroenterology, orthopedics and ophthalmology. The company has strong skills in product development, process chemistry, and manufacturing of complex dosage forms. More information about the company can be found at www.sunpharma.com.

Tildrakizumab
Monoclonal antibody
Type ?
Source Humanized (from mouse)
Target IL23
Identifiers
CAS Number 1326244-10-3
ATC code none
ChemSpider none
Chemical data
Formula C6426H9918N1698O2000S46
Molar mass 144.4 kg/mol

///////Sun Pharma, Merck & Co. Inc, Licensing Agreement, Tildrakizumab, mk 3222

Share

Processes for Constructing Homogeneous Antibody Drug Conjugates

 Uncategorized  Comments Off on Processes for Constructing Homogeneous Antibody Drug Conjugates
May 052016
 
Abstract Image

Antibody drug conjugates (ADCs) are synthesized by conjugating a cytotoxic drug or “payload” to a monoclonal antibody. The payloads are conjugated using amino or sulfhydryl specific linkers that react with lysines or cysteines on the antibody surface. A typical antibody contains over 60 lysines and up to 12 cysteines as potential conjugation sites. The desired DAR (drugs/antibody ratio) depends on a number of different factors and ranges from two to eight drugs/antibody. The discrepancy between the number of potential conjugation sites and the desired DAR, combined with use of conventional conjugation methods that are not site-specific, results in heterogeneous ADCs that vary in both DAR and conjugation sites. Heterogeneous ADCs contain significant fractions with suboptimal DARs that are known to possess undesired pharmacological properties. As a result, new methods for synthesizing homogeneous ADCs have been developed in order to increase their potential as therapeutic agents. This article will review recently reported processes for preparing ADCs with improved homogeneity. The advantages and potential limitations of each process are discussed, with emphasis on efficiency, quality, and in vivo efficacy relative to similar heterogeneous ADCs.

Table 1. Examples of Heterogeneous ADCs Currently in Clinical Trials for Cancer Indicationsa
ADC Sponsor Indications Status Payload Linked to Target
Adcetris Seattle Genetics HL and ALCL approved MMAE cysteine CD30
Kadcyla Genentech/Roche breast cancer approved DM1 lysine Her2
inotuzumab ozogamicin Pfizer NHL and ALL Phase III calicheamicin lysine CD22
lorvotuzumab mertansine Immunogen SCLC Phase II DM1 lysine CD56
glembatumumab vedotin Celldex BC, melanoma Phase II MMAE cysteine GPNMB
PSMA-ADC Progenics prostate Phase II MMAE cysteine FOLH1
SAR-3419 Sanofi DLBCL, ALL Phase II DM4 lysine CD19
ABT-414 Abbvie glioblastoma Phase II MMAE cysteine EGFR
BT-062 Biotest mult. myeloma Phase II DM4 lysine CD138
HLL1-Dox Immunomedics CLL, MM, NHL Phase II doxorubicin cysteine CD74
Immu-130 Immunomedics CRC Phase II SN-38 cysteine CEACAM5
Immu-132 Immunomedics solid tumors Phase II SN-38 cysteine EGP1
SYD985 Synthon breast cancer Phase II duocarmycin cysteine Her2
SAR-3419 Sanofi DLBCL, ALL Phase II DM4 lysine CD19
IMGN853 ImmunoGen solid tumors Phase I DM4 lysine FOLR1
IMGN529 ImmunoGen BCL,CLL, NHL Phase I DM1 lysine CD37
ASG-22M6E Astellas solid tumors Phase I MMAE cysteine nectin-4
AGS-16M8F Astellas RCC Phase I MMAF cysteine AGS16
AMG 172 Amgen RCC Phase I DM1 lysine CD27L
AMG 595 Amgen glioblastoma Phase I DM1 lysine EGFR8
BAY94-9343 Bayer solid tumors Phase I DM4 lysine mesothelin

Processes for Constructing Homogeneous Antibody Drug Conjugates

Igenica Biotherapeutics, 863A Mitten Road, Suite 100B, Burlingame, California 94010, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00067
Publication Date (Web): April 14, 2016
Copyright © 2016 American Chemical Society
*Igenica Biotherapeutics 863A Mitten Road, Suite 100B Burlingame, CA 94010, USA. E-mail: dyjackson@comcast.net. Cell: 650-339-3948.
ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

//////Processes, Constructing,  Homogeneous,  Antibody Drug Conjugates

Share

Quality Documentation of API mix in the Marketing Authorisation Procedure

 regulatory  Comments Off on Quality Documentation of API mix in the Marketing Authorisation Procedure
May 052016
 

For different reasons, the manufacture of APIs may sometimes require adding excipients. In the context of an authorisation procedure, this practice reveals to be problematic. Read more here about the data required for the quality documentation of a API mix in an ASMF or a CEP.

http://www.gmp-compliance.org/enews_05334_Quality-Documentation-of-API-mix-in-the-Marketing-Authorisation-Procedure_15339,15332,S-WKS_n.html

The manufacture of APIs sometimes requires adding of one or several excipients like for example an antioxidant or an inert matrix for stabilisation purposes. Occasionally, corresponding mixtures can be manufactured to optimize workability for further processing or filling (e.g. improvement of flowability). Yet, within a marketing authorisation procedure, such an API mix can possibly be accepted differently than the pure API.

To clarify the questions around this topic, EMA’s QWP has published a document entitled “Quality Working Party questions and answers on API mix“. Please find hereinafter a summary of the questions addressed in the document:

What is an API mix?
An API mix is defined as the mixture of an API with one or more excipients. This also applies to APIs in solution (e.g. Benzalkonium chloride solutions). The manufacture of an API mix is considered to be the first step of the manufacture of the finished product.

Under which circumstances can an API mix be submitted in a CTD (part 3.2.S or 2.C.1), in an ASMF or a CEP within an authorisation procedure?
The quality documentation in a CTD, an ASMF or a CEP is accepted when the mixture must be manufactured for stability or safety reasons. The API mix must comply with the requirements of Part II of the EG GMP Guide (sterile preparations must comply with Part I of the Guide). If an API mix is manufactured for workability or other reasons it should be described in section 3.2.P. The submission via an ASMF is not allowed.

Is an API mix acceptable when it is stated in a pharmacopoeial monograph “A suitable antioxidant may be added”?
Basically, yes. It is acceptable. Nevertheless, the choice and the level of the antioxidant has to be justified and the description of a control test is required.

In the context of an authorisation procedure is there a difference for API monographs with or without reference to a potential excipient admixture?
For monographs containing this reference, an ASMF can generally be accepted. For monographs without the reference, an ASMF can only be accepted when the API mix is required for stability or safety reasons.

Which data must be submitted to justify the acceptability of an API mix manufactured for safety or stability reasons when no pharmacopoeial monograph exists?
The authorisation authority expects comparative stability data API mix / pure API under long term conditions (6-month data). The data should demonstrate a clear improvement of stability in presence of the excipient mix. In any case the choice and level of excipient should be justified.

If an ASMF or a CEP for an API mix is accepted: Which data are required and how should they be structured?
The open part of the ASMF should contain all relevant information on the mixing process, qualitative and quantitative composition of the mixture and control strategy. Information regarding the excipients must be submitted in accordance with the requirements of Annex I of Directive  2001/83/EC. The quality of the excipient has to be documented in module 3.2.P.1 (composition of the medicinal product). If a CEP is available for the API mix the following additional data have to be submitted:

  • The description of the manufacturing process for the API mix (CTD section 3.2.S.2.2).
  • Stability data (if not documented in the CEP)
  • Information on the packaging material (if not mentioned on the CEP)

If a new CEP is presented as a variation then these data also have to be included.

////Quality Documentation,  API mix,  Marketing Authorisation Procedure

Share

EMA publishes finalised Process Validation Guideline for Biotech Products

 regulatory  Comments Off on EMA publishes finalised Process Validation Guideline for Biotech Products
May 052016
 

 

Approximately two years ago the EMA published a draft guideline on process validation for the manufacture of biotech products. Now the final guideline has been published under the title “Guideline on process validation for the manufacture of biotechnology-derived active substances and data to be provided in the regulatory submission“.

READ

http://www.gmp-compliance.org/enews_05342_EMA-publishes-finalised-Process-Validation-Guideline-for-Biotech-Prodcts_15435,15373,15298,15250,Z-VM_n.html

Approximately two years ago the EMA published a draft guideline on process validation for the manufacture of biotech products. Now the final guideline has been published under the title “Guideline on process validation for the manufacture of biotechnology-derived active substances and data to be provided in the regulatory submission”.

The scope of the guideline is to provide guidance on the data to be included in a regulatory submission to demonstrate that the active substance manufacturing process is in a validated state. The guideline focuses on recombinant proteins and polypeptides, their derivates, and products of which they are components (e.g. conjugates). But it is explicitly mentioned that the principles could also be applied to vaccines or plasma-derived products and other biological products, as appropriate.

Process validation is mentioned as life cycle, comparable to Annex 15 and to the EMA guideline on process validation for finished products . Also comparable to both, the guideline offers a traditional or an enhanced  (with reference to ICH Q 11) approach to process validation. A combination of both approaches is possible as well. This “hybrid approach” is in line with the other new European process validation guidelines, too.

Process validation is divided into two parts:

  • process characterisation, where the commercial manufacturing process is defined

and

  • process verification, where the final manufacturing process as established based on process evaluation studies performs effectively in routine manufacturing.

Process characterisation itsself is also divided into two parts:

  • process development, which includes studies to reach a potential design of a future manufacturing process

and

  • process evaluation which includes studies on small and/or commercial scales, providing evidence that the complete manufacturing process has been appropriately designed to design the full operating ranges of the manufacturing process.

It is explicitly mentioned that subsequent to succesfull process validation product quality and process performance must be maintained in a state of control during routine production. This ongoing process verification is normally not part of submission data, with the exception of e.g. niche products, which could not be fully validated at the time of the regulatory submission.

There is no number of validation runs mentioned in this guideline and concurrent validation could  be considered only in exceptional circumstances (e.g. medical need is mentioned) and after consultation with the regulatory authorities.

Please find further information in the “Guideline on process validation for the manufacture of biotechnology-derived active substances and data to be provided in the regulatory submission”

/////EMA,  publishes,  finalised,  Process Validation Guideline,  Biotech Products

Share

Marksans Pharma gets FDA nod for its ANDA for metformin hydrochloride extended release (ER) tablets

 Uncategorized  Comments Off on Marksans Pharma gets FDA nod for its ANDA for metformin hydrochloride extended release (ER) tablets
May 052016
 

Marksans Pharma Ltd - Pharmaceutical Company India

FDA OK for India’s Marksans Pharma Generic Version of Type 2 Diabetes Drug

Read at

FDA OK for India’s Marksans Pharma Generic Version of Type 2 Diabetes Drug

 

 

SEE ALSO

 

Diabetes Drug: Latest Diabetes Drug News, Videos – NDTVprofit.ndtv.com/topic/diabetesdrug

Marksans Pharma Gets US Regulator’s Nod For Diabetes Drug … approval from the US Food and Drug Administration (FDA) for its Metformin Hydrochloride tablets, … mainly from sales of its generic versions of the type 2 diabetes drugs Glumetza and Fortamet, … Lupin, Boehringer Ingelheim to Co-Market Linagliptin in India.
METFORMIN HYDROCHLORIDE ANDA (090295) MARKSANS PHARMA METFORMIN HYDROCHLORIDE
500MG TABLET, EXTENDED RELEASE;ORAL 1
750MG TABLET, EXTENDED RELEASE;ORAL 1

Approval History

Approval

 

EARLIAR YEAR

METFORMIN HYDROCHLORIDE ANDA (090888)

Strength Form/Route Marketing Status
500MG TABLET;ORAL 1
850MG TABLET;ORAL 1
1GM TABLET;ORAL 1

Approval History

 

Mr. Mark Saldanha - Promoter and Managing Director
MR. MARK SALDANHA
Promoter And Managing Director

Mr. Mark Saldanha is the Chairman and Managing Director of Marksans. He set out with a vision to create a global pharmaceutical company. Under his able and dynamic leadership, Marksans has grown rapidly to attain newer milestones and the highest level of performance. He is the principal architect for the progress of the organization.

Mr. Mark Saldanha is a science graduate with more than two decades of experience across business and technical functions. He is well versed with the overall management of the company and possesses vast amount of hands-on experience in marketing, production and finance.

His business acumen, entrepreneurial zeal, organizational skills and managerial abilities have enabled Marksans to grow leaps and bounds and spread its wings across the globe.

 

////////Marksans Pharma,  FDAm, ANDA, metformin hydrochloride,  extended release (ER) tablets

Share

Oliceridine

 Phase 3 drug, Uncategorized  Comments Off on Oliceridine
May 042016
 

TRV130.svg

Oliceridine.png

Oliceridine

N-[(3-methoxythiophen-2-yl)methyl]-2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]ethan-1-amine

[(3-Methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9- yl]ethyl})amine

Phase III

A mu-opioid receptor ligand potentially for treatment of acute postoperative pain.

TRV-130; TRV-130A

CAS No.1401028-24-7

Molecular Formula: C22H30N2O2S
Molecular Weight: 386.5508 g/mol
  • Originator Trevena

Trevena, Inc.

  • Class Analgesics; Small molecules
  • Mechanism of Action Beta arrestin inhibitors; Opioid mu receptor agonists
  • Orphan Drug Status No
  • On Fast track Postoperative pain
    • Phase III Postoperative pain
    • Phase II Pain

    Most Recent Events

    • 09 Mar 2016Trevena intends to submit NDA to US FDA in 2017
    • 22 Feb 2016Oliceridine receives Breakthrough Therapy status for Pain in USA
    • 19 Jan 2016Phase-III clinical trials in Postoperative pain in USA (IV) (NCT02656875)

Oliceridine (TRV130) is an opioid drug that is under evaluation in human clinical trials for the treatment of acute severe pain. It is afunctionally selective μ-opioid receptor agonist developed by Trevena Inc. Oliceridine elicits robust G protein signaling, with potencyand efficacy similar to morphine, but with far less β-arrestin 2 recruitment and receptor internalization, it displays less adverse effectsthan morphine.[1][2][3]

In 2015, the product was granted fast track designation in the U.S. for the treatment of moderate to severe acute pain. In 2016, the compound was granted FDA breakthrough therapy designation for the management of moderate to severe acute pain.

Oliceridine (TRV130) is an intravenous G protein biased ligand that targets the mu opioid receptor. Trevena is developing TRV130 for the treatment of moderate to severe acute pain where intravenous therapy is preferred, with a clinical development focus in acute postoperative pain

TRV 130 HCl is a novel μ-opioid receptor (MOR) G protein-biased ligand; elicits robust G protein signaling(pEC50=8.1), with potency and efficacy similar to morphine, but with far less beta-arrestin recruitment and receptor internalization.

NMR

STR1

Oliceridine (TRV130) – Mu Opioid Biased Ligand for Acute Pain

Target Indication Lead
Optimization
Preclinical
Development
Phase
1
Phase
2
Phase
3
Ownership
Oliceridine (TRV130) Mu-receptor Moderate to
Severe Pain
intravenous Trevena Logo

Oliceridine (TRV130) is an intravenous G protein biased ligand that targets the mu opioid receptor. Trevena is developing TRV130 for the treatment of moderate to severe acute pain where intravenous therapy is preferred, with a clinical development focus in acute postoperative pain.

Recent TRV130 News

Opioid receptors (ORs) mediate the actions of morphine and morphine-like opioids, including most clinical analgesics. Three molecularly and pharmacologically distinct opioid receptor types have been described: δ, κ and μ. Furthermore, each type is believed to have sub-types. All three of these opioid receptor types appear to share the same functional mechanisms at a cellular level. For example, activation of the opioid receptors causes inhibition of adenylate cyclase, and recruits β-arrestin.

When therapeutic doses of morphine are given to patients with pain, the patients report that the pain is less intense, less discomforting, or entirely gone. In addition to experiencing relief of distress, some patients experience euphoria. However, when morphine in a selected pain-relieving dose is given to a pain-free individual, the experience is not always pleasant; nausea is common, and vomiting may also occur. Drowsiness, inability to concentrate, difficulty in mentation, apathy, lessened physical activity, reduced visual acuity, and lethargy may ensue.

There is a continuing need for new OR modulators to be used as analgesics. There is a further need for OR agonists as analgesics having reduced side effects. There is a further need for OR agonists as analgesics having reduced side effects for the treatment of pain, immune dysfunction, inflammation, esophageal reflux, neurological and psychiatric conditions, urological and reproductive conditions, medicaments for drug and alcohol abuse, agents for treating gastritis and diarrhea, cardiovascular agents and/or agents for the treatment of respiratory diseases and cough.

 PAPER

Structure activity relationships and discovery of a g protein biased mu opioid receptor ligand, ((3-Methoxythiophen-2-yl)methyl)a2((9R)-9-(pyridin-2-y1)-6-oxaspiro-(4.5)clecan-9-yl)ethylpamine (TRV130), for the treatment of acute severe pain
J Med Chem 2013, 56(20): 8019

Structure–Activity Relationships and Discovery of a G Protein Biased μ Opioid Receptor Ligand, [(3-Methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan-9-yl]ethyl})amine (TRV130), for the Treatment of Acute Severe Pain

Trevena, Inc., 1018 West 8th Avenue, Suite A, King of Prussia, Pennsylvania 19406, United States
J. Med. Chem., 2013, 56 (20), pp 8019–8031
DOI: 10.1021/jm4010829
Publication Date (Web): September 24, 2013
Copyright © 2013 American Chemical Society
*Phone: 610-354-8840. Fax: 610-354-8850. E-mail: dchen@trevenainc.com.

Abstract

Abstract Image

The concept of “ligand bias” at G protein coupled receptors has been introduced to describe ligands which preferentially stimulate one intracellular signaling pathway over another. There is growing interest in developing biased G protein coupled receptor ligands to yield safer, better tolerated, and more efficacious drugs. The classical μ opioid morphine elicited increased efficacy and duration of analgesic response with reduced side effects in β-arrestin-2 knockout mice compared to wild-type mice, suggesting that G protein biased μ opioid receptor agonists would be more efficacious with reduced adverse events. Here we describe our efforts to identify a potent, selective, and G protein biased μ opioid receptor agonist, TRV130 ((R)-30). This novel molecule demonstrated an improved therapeutic index (analgesia vs adverse effects) in rodent models and characteristics appropriate for clinical development. It is currently being evaluated in human clinical trials for the treatment of acute severe pain.

http://pubs.acs.org/doi/abs/10.1021/jm4010829

[(3-Methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl] ethyl})amine ((R)-30)

Using a procedure described in method A, (R)-39e was converted to (R)-30 as a TFA salt. 1H NMR (400 MHz, CDCl3) δ 11.70 (brs, 1H), 9.14 (d, J = 66.6, 2H), 8.72 (d, J = 4.3, 1H), 8.19 (td,J = 8.0, 1.4, 1H), 7.70 (d, J = 8.1, 1H), 7.63 (dd, J = 7.0, 5.8, 1H), 7.22 (d, J = 5.5, 1H), 6.78 (d,J = 5.6, 1H), 4.08 (m, 2H), 3.80 (m, 4H), 3.69 (dd, J = 11.2, 8.7, 1H), 2.99 (d, J = 4.8, 1H), 2.51 (t, J = 9.9, 1H), 2.35 (m, 3H), 2.18 (td, J = 13.5, 5.4, 1H), 1.99 (d, J = 14.2, 1H), 1.82 (m, 2H), 1.65 (m, 1H), 1.47 (m, 4H), 1.14 (m, 1H), 0.73 (dt, J = 13.2, 8.9, 1H). LC-MS (API-ES) m/z = 387.0 (M + H).

Patent

WO 2012129495

http://www.google.com/patents/WO2012129495A1?cl=en

Scheme 1: Synthesis of Spirocyclic Nitrile

NCCH2C02CH3 AcOH, NH4OAc

Figure imgf000050_0001
Figure imgf000050_0002

1-5 1-6 1-7

Chiral HPLC separation n=1-2

R= phenyl, substituted phenyl, aryl,

Figure imgf000050_0003

s

Scheme 2: Converting the nitrile to the opioid receptor ligand (Approach 1)

Figure imgf000051_0001

2-4

 

Scheme 3: Converting the nitrile to the opioid receptor ligand (Approach 2)

Figure imgf000051_0002

1-8B 3-1 3-2 n=1-2

 

In some embodiments, the same scheme is applied to 1 -7 and 1 -8A. Scheme 4: Synthesis of Non-Spirocyclic Nitrile

Figure imgf000052_0001

4-1 4-2 4-3

KOH, ethylene glycol R= phenyl, substituted phenyl, aryl,

substituted aryl, pyridyl, substituted pyridyl, heat heteroaryl, substituted heteroaryl,

Figure imgf000052_0002

carbocycle, heterocycle and etc.

In some embodiments, 4-1 is selected from the group consisting of

Figure imgf000052_0003

4-1 A 4-1 B 4-1 C 4-1 D 4-1 E

 

Scheme 5: Synthesis of Other Spirocyclic Derived Opioid Ligands

Figure imgf000053_0001

5-1 5-2 5-3

 

Scheme 6: Allyltrimethylsilane Approach to Access the Quaternary Carbon Center

RMgX, or RLi

Figure imgf000053_0002

 

Scheme 7: N-linked Pyrrazole Opioid Receptor Ligand

Figure imgf000054_0001
Figure imgf000055_0001

[(3-Methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9- yl]ethyl})amine

Figure imgf000144_0001

Into a vial were added 2-[(9R)-9-(Pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]ethan-l -amine (500 mg, 1.92 mmole), 18 mL CH2C12 and sodium sulfate (1.3 g, 9.6 mmole). The 3- methoxythiophene-2-carboxaldehyde (354 mg, 2.4 mmole) was then added, and the misture was stirred overnight. NaBH4 (94 mg, 2.4 mmole) was added to the reaction mixture, stirred for 10 minutes, and then MeOH (6.0 mL) was added, stirred l h, and finally quenched with water. The organics were separated off and evaporated. The crude residue was purified by a Gilson prep HPLC. The desired fractions collected and concentrated and lyophilized. After lyophilization, residue was partitioned between CH2C12 and 2N NaOH, and the organic layers were collected. After solvent was concentrated to half of the volume, 1.0 eq of IN HC1 in Et20 was added,and majority of solvent evaporated under reduced pressure. The solid obtained was washed several times with Et20 and dried to provide [(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2- yl)-6-oxaspiro[4.5]decan-9-yl]ethyl})amine monohydrochloride (336 mg, 41% yield, m/z 387.0 [M + H]+ observed) as a white solid. The NMR for Compound 140 is described herein.

Example 15: Synthesis of [(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9- (pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]ethyl})amine (Compound 140).

Methyl 2-cyano-2-[6-oxaspiro[4.5]decan-9-ylidene]acetate (mixture of E and Z isomers)

Figure imgf000141_0001

A mixture of 6-oxaspiro[4.5]decan-9-one (13.74 g, 89.1 mmol), methylcyanoacetate (9.4 ml, 106.9 mmol), ammonium acetate (1.79 g, 26.17.mmol) and acetic acid (1.02 ml, 17.8 mmol) in benzene (75 ml) was heated at reflux in a 250 ml round bottom flask equipped with a Dean-Stark and a reflux condenser. After 3h, TLC (25%EtOAc in hexane, PMA stain) showed the reaction was completed. After cooling, benzene (50 ml) was added and the layer was separated, the organic was washed by water (120 ml) and the aqueous layer was extracted by CH2CI2 (3 x 120 ml). The combined organic was washed with sat’d NaHCCb, brine, dried and concentrated and the residual was purified by flash chromatography (340 g silica gel column, eluted by EtOAc in hexane: 5% EtOAc, 2CV; 5-25%, 14CV; 25-40%,8 CV) gave a mixture of E and Z isomers: methyl 2-cyano-2-[6- oxaspiro[4.5]decan-9-ylidene]acetate ( 18.37 g, 87.8 % yield, m/z 236.0 [M + H]+ observed) as a clear oil. -cyano-2-[9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]acetate

Figure imgf000141_0002

A solution of 2-bromopyridine (14.4 ml, 150 mmo) in THF (75 ml) was added dropwise to a solution of isopropylmagnesium chloride (75 ml, 2M in THF) at 0°C under N2, the mixture was then stirred at rt for 3h, copper Iodide(2.59 g, 13.6 mmol) was added and allowed to stir at rt for another 30 min before a solution of a mixture of E and Z isomers of methyl 2-cyano-2-[6-oxaspiro[4.5]decan-9-ylidene]acetate (16 g, 150 mmol) in THF (60 ml) was added in 30 min. The mixture was then stirred at rt for 18h. The reaction mixture was poured into a 200 g ice/2 N HC1 (100 ml) mixture. The product was extracted with Et20 (3×300 ml), washed with brine (200 ml), dried (Na2S04) and concentrated. The residual was purified by flash chromatography (100 g silica gel column, eluted by EtOAc in hexane: 3% 2CV; 3-25%, 12 CV; 25-40% 6CV gave methyl 2-cyano-2-[9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]acetate (15.44 g, 72% yield, m/z 315.0 [M + H]+ observed) as an amber oil .

-[9-(Pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]acetonitrile

Figure imgf000142_0001

Ethylene glycol (300 ml) was added to methyl 2-cyano-2-[9-(pyridin-2-yl)-6- oxaspiro[4.5]decan-9-yl]acetate( 15.43 g, 49 mmol) followed by potassium hydroxide (5.5 g , 98 mmol), the resulting mix was heated to 120oC, after 3 h, the reaction mix was cooled and water (300 ml) was added, the product was extracted by Et20(3 x 400 ml), washed with water(200 ml), dried (Na2S04) and concentrated, the residual was purified by flash chromatography (340 g silica gel column, eluted by EtOAc in hexane: 3% 2CV; 3-25%, 12 CV; 25-40% 6CV to give 2-[9-(Pyridin-2-yl)-6-oxaspiro[4.5]decan-9- yl]acetonitrile (10.37 g, 82% yield, m/z 257.0 [M + H]+ observed).

-yl)-6-oxaspiro[4.5]decan-9-yl]acetonitrile

Figure imgf000142_0002

racemic 2-[9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]acetonitrile was separated by chiral HPLC column under the following preparative-SFC conditions: Instrument: SFC-80 (Thar, Waters); Column: Chiralpak AD-H (Daicel); column temperature: 40 °C; Mobile phase: Methanol /CO2=40/60; Flow: 70 g/min; Back pressure: 120 Bar; Cycle time of stack injection: 6.0min; Load per injection: 225 mg; Under these conditions, 2-[9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]acetonitrile (4.0 g) was separated to provide the desired isomer, 2-[(9R)-9-(Pyridin-2-yI)-6- oxaspiro[4.5]decan-9-yl]acetonitrile (2.0 g, >99.5% enantiomeric excess) as a slow- moving fraction. The absolute (R) configuration of the desired isomer was later determined by an X-ray crystal structure analysis of Compound 140. [0240] -[(9R)-9-(Pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]ethan-l-amine

Figure imgf000143_0001

LAH (1M in Et20, 20ml, 20 mmol) was added to a solution of 2-[(9R)-9-(pyridin-2-yl)- 6-oxaspiro[4.5]decan-9-yl]acetonitrile (2.56 g, 10 mmol) in Et20 (100 ml, 0.1M ) at OoC under N2. The resulting mix was stirred and allowed to warm to room temperature. After 2 h, LCMS showed the reaction had completed. The reaction was cooled at OoC and quenched with water ( 1.12 ml), NaOH (10%, 2.24 ml) and another 3.36 ml of water. Solid was filtered and filter pad was washed with ether (3 x 20 ml). The combined organic was dried and concentrated to give 2-[(9R)-9-(Pyridin-2-yl)-6- oxaspiro[4.5]decan-9-yl]ethan-l -amine (2.44 g, 94% yield, m/z 260.6 [M + H]+ observed) as a light amber oil.

Alternatively, 2-[(9R)-9-(Pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]ethan-l -amine was prepared by Raney-Nickel catalyzed hydrogenation.

An autoclave vessel was charged with 2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro[4,5]decan-9- yl] acetonitrile and ammonia (7N solution in methanol). The resulting solution was stirred at ambient conditions for 15 minutes and treated with Raney 2800 Nickel, slurried in water. The vessel was pressurized to 30 psi with nitrogen and agitated briefly. The autoclave was vented and the nitrogen purge repeated additional two times. The vessel was pressurized to 30 psi with hydrogen and agitated briefly. The vessel was vented and purged with hydrogen two additional times. The vessel was pressurized to 85-90 psi with hydrogen and the mixture was warmed to 25-35 °C. The internal temperature was increased to 45-50 °C over 30-60 minutes. The reaction mixture was stirred at 45-50 °C for 3 days. The reaction was monitored by HPLC. Once reaction was deemed complete, it was cooled to ambient temperature and filtered through celite. The filter cake was washed with methanol (2 x). The combined filtrates were concentrated under reduced pressure at 40-45 °C. The resulting residue was co-evaporated with EtOH (3 x) and dried to a thick syrupy of 2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]ethan-l -amine.

References

  1.  Chen XT, Pitis P, Liu G, Yuan C, Gotchev D, Cowan CL, Rominger DH, Koblish M, Dewire SM, Crombie AL, Violin JD, Yamashita DS (October 2013). “Structure-Activity Relationships and Discovery of a G Protein Biased μ Opioid Receptor Ligand, [(3-Methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan-9-yl]ethyl})amine (TRV130), for the Treatment of Acute Severe Pain”. J. Med. Chem. 56 (20): 8019–31.doi:10.1021/jm4010829. PMID 24063433.
  2.  DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (March 2013). “A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine”. J. Pharmacol. Exp. Ther. 344 (3): 708–17.doi:10.1124/jpet.112.201616. PMID 23300227.
  3.  Soergel DG, Subach RA, Sadler B, Connell J, Marion AS, Cowan C, Violin JD, Lark MW (October 2013). “First clinical experience with TRV130: Pharmacokinetics and pharmacodynamics in healthy volunteers”. J Clin Pharmacol 54(3): 351–7. doi:10.1002/jcph.207. PMID 24122908.

External links

Patent ID Date Patent Title
US2015246904 2015-09-03 Opioid Receptor Ligands And Methods Of Using And Making Same
US8835488 2014-09-16 Opioid receptor ligands and methods of using and making same
US2013331408 2013-12-12 Opioid Receptor Ligands and Methods of Using and Making Same
Oliceridine
TRV130.svg
Systematic (IUPAC) name
N-[(3-methoxythiophen-2-yl)methyl]-2-[(9R)-9-pyridin-2-yl-6-oxaspiro[4.5]decan-9-yl]ethanamine
Clinical data
Routes of
administration
IV
Legal status
Legal status
Identifiers
CAS Number 1401028-24-7
ATC code none
PubChem CID 66553195
ChemSpider 30841043
UNII MCN858TCP0
ChEMBL CHEMBL2443262
Synonyms TRV130
Chemical data
Formula C22H30N2O2S
Molar mass 386.55 g·mol−1

////////TRV-130; TRV-130A, Oliceridine, Phase III, Postoperative pain, trevena, mu-opioid receptor ligand, fast track designation, breakthrough therapy designation

COc1ccsc1CNCC[C@]2(CCOC3(CCCC3)C2)c4ccccn4

Share

Galunisertib

 Phase 3 drug, Uncategorized  Comments Off on Galunisertib
May 042016
 

Galunisertib

Phase III

A TGF-beta receptor type-1 inhibitor potentially for the treatment of myelodysplastic syndrome (MDS) and solid tumours.

LY-2157299

CAS No.700874-72-2

4-[2-(6-methylpyridin-2-yl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl]quinoline-6-carboxamide
6-Quinolinecarboxamide, 4-[5,6-dihydro-2-(6-methyl-2-pyridinyl)-4H-pyrrolo[1,2-b]pyrazol-3-yl]-
700874-72-2
  • Molecular FormulaC22H19N5O
  • Average mass369.419 Da

Eli Lilly and Company

4-(2-(6-methylpyridin-2-yl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)quinoline-6-carboxamide

4-(2-(6-Methylpyridin-2-yl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)quinolin-6-carboxamide monohydrate 

Anal. Calcd for C22H19N5O·H2O: C, 68.20; H, 5.46; N, 18.08. Found: C, 68.18; H, 5.34; N, 17.90.

1H NMR (DMSO-d6: δ) 1.74 (s, 3H), 2.63 (m, 2H), 2.82 (br s, 2H), 4.30 (t, J = 7.2 Hz, 2H), 6.93 (m, 1H), 7.37 (s, 1H), 7.41 (d, J = 4.4 Hz, 1H), 7.56 (m, 1H), 7.58 (m, 1H), 8.04, (s, 1H), 8.04 (d, J = 4.4 Hz, 1H), 8.12 (dd, J = 8.8, 1.6 Hz, 1H), 8.25 (d, J = 2.0 Hz, 1H), 8.87 (d, J = 4.4 Hz, 1H).

13C NMR (DMSO-d6: δ) 22.56, 23.24, 25.58, 48.01, 109.36, 117.74, 121.26, 122.95, 126.73, 127.16 (2C), 129.01, 131.10, 136.68, 142.98, 147.20, 148.99, 151.08, 151.58, 152.13, 156.37, 167.47.

IR (KBr): 3349, 3162, 3067, 2988, 2851, 1679, 1323, 864, 825 cm–1.

HRMS (m/z M + 1): Calcd for C22H19N5O: 370.1653. Found: 370.1662.

GalunisertibAn orally available, small molecule antagonist of the tyrosine kinase transforming growth factor-beta (TGF-b) receptor type 1 (TGFBR1), with potential antineoplastic activity. Upon administration, galunisertib specifically targets and binds to the kinase domain of TGFBR1, thereby preventing the activation of TGF-b-mediated signaling pathways. This may inhibit the proliferation of TGF-b-overexpressing tumor cells. Dysregulation of the TGF-b signaling pathway is seen in a number of cancers and is associated with increased cancer cell proliferation, migration, invasion and tumor progression.

.

  • OriginatorEli Lilly
  • DeveloperEli Lilly; National Cancer Institute (USA); Vanderbilt-Ingram Cancer Center; Weill Cornell Medical College
  • ClassAntineoplastics; Pyrazoles; Pyridines; Pyrroles; Quinolines; Small molecules
  • Mechanism of ActionPhosphotransferase inhibitors; Transforming growth factor beta1 inhibitors
    • Phase II/IIIMyelodysplastic syndromes
    • Phase IIBreast cancer; Glioblastoma; Hepatocellular carcinoma
    • Phase I/IIGlioma; Non-small cell lung cancer; Pancreatic cancer
    • Phase ICancer; Solid tumours

    Most Recent Events

    • 26 Apr 2016Eli Lilly plans a pharmacokinetics phase I trial in Healthy volunteers in United Kingdom (PO) (NCT02752919)
    • 16 Apr 2016Pharmacodynamics data from a preclinical study in Cancer presented at the 107th Annual Meeting of the American Association for Cancer Research (AACR-2016)
    • 06 Apr 2016Eli Lilly and AstraZeneca plan a phase Ib trial for Pancreatic cancer (Second-line therapy or greater, Metastatic disease, Recurrent, Combination therapy) in USA, France, Italy, South Korea and Spain (PO) (NCT02734160)

Transforming growth factor-beta (TGF-β) signaling regulates a wide range of biological processes. TGF-β plays an important role in tumorigenesis and contributes to the hallmarks of cancer, including tumor proliferation, invasion and metastasis, inflammation, angiogenesis, and escape of immune surveillance. There are several pharmacological approaches to block TGF-β signaling, such as monoclonal antibodies, vaccines, antisense oligonucleotides, and small molecule inhibitors. Galunisertib (LY2157299 monohydrate) is an oral small molecule inhibitor of the TGF-β receptor I kinase that specifically downregulates the phosphorylation of SMAD2, abrogating activation of the canonical pathway. Furthermore, galunisertib has antitumor activity in tumor-bearing animal models such as breast, colon, lung cancers, and hepatocellular carcinoma. Continuous long-term exposure to galunisertib caused cardiac toxicities in animals requiring adoption of a pharmacokinetic/pharmacodynamic-based dosing strategy to allow further development. The use of such a pharmacokinetic/pharmacodynamic model defined a therapeutic window with an appropriate safety profile that enabled the clinical investigation of galunisertib. These efforts resulted in an intermittent dosing regimen (14 days on/14 days off, on a 28-day cycle) of galunisertib for all ongoing trials. Galunisertib is being investigated either as monotherapy or in combination with standard antitumor regimens (including nivolumab) in patients with cancer with high unmet medical needs such as glioblastoma, pancreatic cancer, and hepatocellular carcinoma. The present review summarizes the past and current experiences with different pharmacological treatments that enabled galunisertib to be investigated in patients.

Company Eli Lilly and Co.
Description Transforming growth factor (TGF) beta receptor 1 (TGFBR1; ALK5) inhibitor
Molecular Target Transforming growth factor (TGF) beta receptor 1 (TGFBR1) (ALK5)
Mechanism of Action Transforming growth factor (TGF) beta 1 inhibitor
Therapeutic Modality Small molecule

Bristol-Myers Squibb and Lilly Enter Clinical Collaboration Agreement to Evaluate Opdivo (nivolumab) in Combination with Galunisertib in Advanced Solid Tumors

Bristol-Myers Squibb and Lilly

NEW YORK & INDIANAPOLIS–(BUSINESS WIRE)– Bristol-Myers Squibb Company (NYSE:BMY) and Eli Lilly and Company (NYSE:LLY) announced today a clinical trial collaboration to evaluate the safety, tolerability and preliminary efficacy of Bristol-Myers Squibb’s immunotherapy Opdivo (nivolumab) in combination with Lilly’s galunisertib (LY2157299). The Phase 1/2 trial will evaluate the investigational combination of Opdivo and galunisertib as a potential treatment option for patients with advanced (metastatic and/or unresectable) glioblastoma, hepatocellular carcinoma and non-small cell lung cancer.

Opdivo is a human programmed death receptor-1 (PD-1) blocking antibody that binds to the PD-1 receptor expressed on activated T-cells. Galunisertib (pronounced gal ue” ni ser’tib) is a TGF beta R1 kinase inhibitor that in vitro selectively blocks TGF beta signaling. TGF beta promotes tumor growth, suppresses the immune system and increases the ability of tumors to spread in the body. This collaboration will address the hypothesis that co-inhibition of PD-1 and TGF beta negative signals may lead to enhanced anti-tumor immune responses than inhibition of either pathway alone.

“Advanced solid tumors represent a serious unmet medical need among patients with cancer,” said Michael Giordano, senior vice president, Head of Development, Oncology, Bristol-Myers Squibb. “Our clinical collaboration with Lilly underscores Bristol-Myers Squibb’s continued commitment to explore combination regimens from our immuno-oncology portfolio with other mechanisms of action that may accelerate the development of new treatment options for patients.”

“Combination therapies will be key to addressing tumor heterogeneity and the inevitable resistance that is likely to develop to even the most promising new tailored therapies,” said Richard Gaynor, M.D., senior vice president, Product Development and Medical Affairs, Lilly Oncology. “To that end, having multiple cancer pathways and technology platforms will be critical in an era of combinations to ensure sustainability beyond any single asset.”

The study will be conducted by Lilly. Additional details of the collaboration were not disclosed.

About Galunisertib

Galunisertib (pronounced gal ue” ni ser’tib) is Lilly’s TGF beta R1 kinase inhibitor that in vitro selectively blocks TGF beta signaling. TGF beta promotes tumors growth, suppresses the immune system, and increases the ability of tumors to spread in the body.

Immune function is suppressed in cancer patients, and TGF beta worsens immunosuppression by enhancing the activity of immune cells called T regulatory cells. TGF beta also reduces immune proteins, further decreasing immune activity in patients

Galunisertib is currently under investigation as an oral treatment for advanced/metastatic malignancies, including Phase 2 evaluation in hepatocellular carcinoma, myelodysplastic syndromes (MDS), glioblastoma, and pancreatic cancer.

PATENT

WO 2004048382

The disclosed invention also relates to the select compound of Formula II:

Figure imgf000005_0001

Formula II

2-(6-methyl-pyridin-2-yI)-3-[6-amido-quinolin-4-yl)-5,6-dihydro-4H-pyrrolo[l,2- bjpyrazole and the phannaceutically acceptable salts thereof.

The compound above is genetically disclosed and claimed in PCT patent application PCT/US02/11884, filed 13 May 2002, which claims priority from U.S. patent application U. S . S .N. 60/293 ,464, filed 24 May 2001 , and incorporated herein by reference. The above compound has been selected for having a surprisingly superior toxicology profile over the compounds specifically disclosed in application cited above.

 

The following scheme illustrates the preparation of the compound of Formula II.

Scheme II

Figure imgf000007_0001

Cs2C03

Figure imgf000007_0002

The following examples further illustrate the preparation of the compounds of this invention as shown schematically in Schemes I and II. Example 1

Preparation of 7-(2-morpholin-4-yI-ethoxy)-4-(2-pyridin-2-yl-5,6-dihydro-4H- pyrroIo[l,2-b]pyrazol-3-yl)-q inoline

A. Preparation of 4-(2-pyridin-2-yl-5,6-dihydro-4H-pyrrolo[l,2-b]pyrazol-3-yl)- 7-[2-(tetrahydropyran-2-yIoxy)ethoxy]quinoIine

Heat 4-(2-pyridm-2-yl-5,6-dihydro-4H-pyrrolo[l,2-b]pyrazol-3-yl)-quinolin-7-ol (376 mg, 1.146 mmol), cesium carbonate (826 mg, 2.54 mmol), and 2-(2- bromoethoxy)tetrahydro-2H-pyran (380 μL, 2.52 mmol) in DMF (5 mL) at 120 °C for 4 hours. Quench the reaction with saturated sodium chloride and then extract with chloroform. Dry the organic layer over sodium sulfate and concentrate in vacuo. Purify the reaction mixture on a silica gel column eluting with dichloromethane to 10% methanol in dichloromethane to give the desired subtitled intermediate as a yellow oil (424 mg, 81%). MS ES+m/e 457.0 (M+l).

 

EXAMPLE 2

Preparation of 2-(6-methyl-pyridin-2-yl)-3-[6-amido-quinolin-4-yl)-5,6-dihydro-4H-pyrrolo[l,2- b]pyrazole

A. Preparation of 6-bromo-4-methyI-quinoline

Stir a solution of 4-bromo-phenylamine (1 eq), in 1,4-dioxane and cool to approximately 12 °C. Slowly add sulfuric acid (2 eq) and heat at reflux. Add methyl vinyl ketone (1.5 eq) drop wise into the refluxing solution. Heat the solution for 1 hour after addition is complete. Evaporate the reaction solution to dryness and dissolve in methylene chloride. Adjust the solution to pH 8 with 1 M sodium carbonate and extract three times with water. Chromatograph the residue on SiO (70/30 hexane/ethyl acetate) to obtain the desired subtitled inteπnediate. MS ES+ m e = 158.2 (M+l). B. Preparation of 6-methyl-pyridine-2-carboxylic acid methyl ester

Suspend 6-methyl-pyridine-2-carboxylic acid (10 g, 72.9 mmol) in methylene chloride (200 mL). Cool to 0 °C. Add methanol (10 mL), 4-dimethylaminopyridine (11.6 g, 94.8 mmol), and l-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)

(18.2 g, 94.8 mmol). Stir the mixture at room temperature for 6 hours, wash with water and brine, and dry over sodium sulfate. Filter the mixture and concentrate in vacuo.

Chromatograph the residue on SiO2 (50% ethyl acetate/hexanes) to obtain the desired subtitled intermediate, 9.66 g (92%), as a colorless liquid. 1H NMR (CDC13) 6 7.93-7.88 (m, IH), 7.75-7.7 (m, IH), 7.35-7.3 (m, IH), 4.00 (s, 3H), 2.60 (s, 3H).

C. Preparation of 2-(6-bromo-quinoIin-4-yl)-l-(6-methyl-pyridin-2-yl)-ethanone Dissolve 6-bromo-4-methyl-quinoline (38.5 g, 153 mmol) in 600 mL dry THF.

Cool to -70° C and treat with the dropwise addition of 0.5 M potassium hexamethyldisilazane (KN(SiMe )2 (400 mL, 200 mmol) over 2 hours while keeping the temperature below -65 °C. Stir the resultant solution at -70°C for 1 hour and add a solution of 6-methylpyridine-2-carboxylic acid methyl ester (27.2, 180 mmol) in 100 mL dry THF dropwise over 15 minutes. During the addition, the mixture will turn from dark red to pea-green and form a precipitate. Stir the mixture at -70°C over 2 hours then allow it to warm to ambient temperature with stirring for 5 hours. Cool the mixture then quench with 12 N HC1 to pH=l . Raise the pH to 9 with solid potassium carbonate. Decant the solution from the solids and extract twice with 200 mL ethyl acetate. Combine the organic extracts, wash with water and dry over potassium carbonate. Stir the solids in 200 mL water and 200 mL ethyl acetate and treat with additional potassium carbonate. Separate the organic portion and dry with the previous ethyl acetate extracts. Concentrate the solution in vacuo to a dark oil. Pass the oil through a 300 mL silica plug with methylene chloride then ethyl acetate. Combine the appropriate fractions and concentrate in vacuo to yield an amber oil. Rinse the oil down the sides of the flask with methylene chloride then dilute with hexane while swirling the flask to yield 38.5 g (73.8 %) of the desired subtitled intermediate as a yellow solid. MS ES+ = 341 (M+l)v D. Preparation of l-[2-(6-bromo-quinolin-4-yI)-l-(6-methyl-pyridin-2-yl)- ethylideneamino]-pyrrolidin-2-one

Stir a mixture of 2-(6-bromo-quinolin-4-yl)-l-(6-methyl-pyridin-2-yl)-ethanone (38.5 g, 113 mmol) and 1-aminopyrrolidinone hydrochloride (20 g, 147 mmol) in 115 mL pyridine at ambient temperature for 10 hours. Add about 50 g 4 A unactivated sieves. Continue stirring an additional 13 h and add 10-15 g silica and filter the mixture through a 50 g silica plug. Elute the silica plug with 3 L ethyl acetate. Combine the filtrates and concentrate in vacuo. Collect the hydrazone precipitate by filtration and suction dry to yield 33.3 g (69.7%) of the desired subtitled intermediate as an off-white solid. MS ES+ = 423 (M+l).

E. Preparation of 6-bromo-4-[2-(6-methyl-pyridin-2-yι)-5,6-dihydro-4H- pyrrolo[l,2-b]pyrazol-3-yl]-quinoline

To a mixture of (1.2 eq.) cesium carbonate and l-[2-(6-bromo-qumolin-4-yl)-l- (6-methyl-pyridin-2-yl)-ethylideneamino]-pyrrolidin-2-one (33.3 g, 78.7 mmol) add 300 mL dry N,N-dimethylformamide. Stir the mixture 20 hours at 100°C. The mixture may turn dark during the reaction. Remove the N,N-dimethylformamide in vacuo. Partition the residue between water and methylene chloride. Extract the aqueous portion with additional methylene chloride. Filter the organic solutions through a 300 mL silica plug, eluting with 1.5 L methylene chloride, 1.5 L ethyl acetate and 1.5 L acetone. Combine the appropriate fractions and concentrate in vacuo. Collect the resulting precipitate by filtration to yield 22.7 g (71.2%) of the desired subtitled intermediate as an off-white solid. MS ES+ = 405 (M+l).

F. Preparation of 4-[2-(6-methyl-pyridin-2-yl)-5,6-dihydro-4H-pyrrolo[l,2- b]pyrazol-3-yl]-quinoline-6-carboxylic acid methyl ester

Add 6-bromo-4-[2-(6-methyl-pyridin-2-yl)-5,6-dihydro-4H-pyrrolo[l,2- b]pyrazol-3-yl]-quinoline (22.7 g, 45 mmol) to a mixture of sodium acetate (19 g, 230 mmol) and the palladium catalyst [1,1 ‘- bis(diphenylphosphino)ferrocene]dichloropalladium(II), complex with dichloromethane (1:1) (850 mg, 1.04 mmol) in 130 mL methanol. Place the mixture under 50 psi carbon monoxide atmosphere and stir while warming to 90° C over 1 hour and with constant charging with additional carbon monoxide. Allow the mixture to cool over 8 hours, recharge again with carbon monoxide and heat to 90 °C. The pressure may rise to about 75 PSI. The reaction is complete in about an hour when the pressure is stable and tic (1 : 1 toluene/acetone) shows no remaining bromide. Partition the mixture between methylene chloride (600 mL) and water (1 L). Extract the aqueous portion with an additional portion of methylene chloride (400 mL.) Filter the organic solution through a 300 mL silica plug and wash with 500 mL methylene chloride, 1200 mL ethyl acetate and 1500 mL acetone. Discard the acetone portion. Combine appropriate fractions and concentrate to yield 18.8 g (87.4%) of the desired subtitled intermediate as a pink powder. MS ES+ = 385 (M+l).

G. Preparation of 2-(6-methyl-pyridin-2-yl)-3-[6-amido-quinolin-4-yι)-5,6- dihydro-4H-pyrrolo[l,2-b]pyrazole

Figure imgf000012_0001

Warm a mixture of 4-[2-(6-methyl-pyridin-2-yl)-5,6-dihydro-4H-pyrrolo[l,2- b]pyrazol-3-yl]-quinolme-6-carboxylic acid methyl ester in 60 mL 7 N ammonia in methanol to 90 °C in a stainless steel pressure vessel for 66 hours. The pressure will rise to about 80 PSI. Maintain the pressure for the duration of the reaction. Cool the vessel and concentrate the brown mixture in vacuo. Purify the residual solid on two 12 g Redi- Pak cartridges coupled in series eluting with acetone. Combine appropriate fractions and concentrate in vacuo. Suspend the resulting nearly white solid in methylene chloride, dilute with hexane, and filter. The collected off-white solid yields 1.104 g (63.8%) of the desired title product. MS ES+ = 370 (M+l).

PAPER

http://pubs.acs.org/doi/abs/10.1021/op4003054

Application of Kinetic Modeling and Competitive Solvent Hydrolysis in the Development of a Highly Selective Hydrolysis of a Nitrile to an Amide

Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
Org. Process Res. Dev., 2014, 18 (3), pp 410–416
DOI: 10.1021/op4003054
Publication Date (Web): February 11, 2014
Copyright © 2014 American Chemical Society
*Telephone: (317) 276-2066. E-mail: niemeier_jeffry_k@lilly.com (J.K.N.)., *Telephone: (317) 433-3769. E-mail: rrothhaar@lilly.com(R.R.R.).

Abstract

Abstract Image

A combination of mechanism-guided experimentation and kinetic modeling was used to develop a mild, selective, and robust hydroxide-promoted process for conversion of a nitrile to an amide using a substoichiometric amount of aqueous sodium hydroxide in a mixed water and N-methyl-2-pyrrolidone solvent system. The new process eliminated a major reaction impurity, minimized overhydrolysis of the product amide by selection of a solvent that would be sacrificially hydrolyzed, eliminated genotoxic impurities, and improved the intrinsic safety of the process by eliminating the use of hydrogen peroxide. The process was demonstrated in duplicate on a 90 kg scale, with 89% isolated yield and greater than 99.8% purity.

Patent ID Date Patent Title
US2015289795 2015-10-15 METHODS AND KITS FOR THE PROGNOSIS OF COLORECTAL CANCER
US2014348889 2014-11-27 Compositions and Methods for Treating and Preventing Neointimal Stenosis
US2014328860 2014-11-06 METHODS FOR STIMULATING HEMATOPOIETIC RECOVERY BY INHIBITING TGF BETA SIGNALING
US2014127228 2014-05-08 INHIBITION OF TGFBETA SIGNALING TO IMPROVE MUSCLE FUNCTION IN CANCER
US2014128349 2014-05-08 ADMINISTERING INHIBITORS OF TGFBETA SIGNALING IN COMBINATION WITH BENZOTHIAZEPINE DERIVATIVES TO IMPROVE MUSCLE FUNCTION IN CANCER PATIENTS
US2013071931 2013-03-21 PROCESS FOR HEPATIC DIFFERENTIATION FROM INDUCED HEPATIC STEM CELLS, AND INDUCED HEPATIC PROGENITOR CELLS DIFFERENTIATED THEREBY
US7872020 2011-01-18 TGF-[beta] inhibitors
US7834029 2010-11-16 QUINOLINYL-PYRROLOPYRAZOLES
US7265225 2007-09-04 Quinolinyl-pyrrolopyrazoles

REFERENCES

1: Rodón J, Carducci M, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly A, Pillay NS, Desaiah D, Estrem ST, Paz-Ares L, Holdhoff M, Blakeley J, Lahn MM, Baselga J. Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest New Drugs. 2014 Dec 23. [Epub ahead of print] PubMed PMID: 25529192.

2: Kovacs RJ, Maldonado G, Azaro A, Fernández MS, Romero FL, Sepulveda-Sánchez JM, Corretti M, Carducci M, Dolan M, Gueorguieva I, Cleverly AL, Pillay NS, Baselga J, Lahn MM. Cardiac Safety of TGF-β Receptor I Kinase Inhibitor LY2157299 Monohydrate in Cancer Patients in a First-in-Human Dose Study. Cardiovasc Toxicol. 2014 Dec 9. [Epub ahead of print] PubMed PMID: 25488804.

3: Rodon J, Carducci MA, Sepulveda-Sanchez JM, Azaro A, Calvo E, Seoane J, Brana I, Sicart E, Gueorguieva I, Cleverly AL, Sokalingum Pillay N, Desaiah D, Estrem ST, Paz-Ares L, Holdoff M, Blakeley J, Lahn MM, Baselga J. First-in-Human Dose Study of the Novel Transforming Growth Factor-β Receptor I Kinase Inhibitor LY2157299 Monohydrate in Patients with Advanced Cancer and Glioma. Clin Cancer Res. 2014 Nov 25. pii: clincanres.1380.2014. [Epub ahead of print] PubMed PMID: 25424852.

4: Huang C, Wang H, Pan J, Zhou D, Chen W, Li W, Chen Y, Liu Z. Benzalkonium Chloride Induces Subconjunctival Fibrosis Through the COX-2-Modulated Activation of a TGF-β1/Smad3 Signaling Pathway. Invest Ophthalmol Vis Sci. 2014 Nov 18;55(12):8111-22. doi: 10.1167/iovs.14-14504. PubMed PMID: 25406285.

5: Cong L, Xia ZK, Yang RY. Targeting the TGF-β receptor with kinase inhibitors for scleroderma therapy. Arch Pharm (Weinheim). 2014 Sep;347(9):609-15. doi: 10.1002/ardp.201400116. Epub 2014 Jun 11. PubMed PMID: 24917246.

6: Gueorguieva I, Cleverly AL, Stauber A, Sada Pillay N, Rodon JA, Miles CP, Yingling JM, Lahn MM. Defining a therapeutic window for the novel TGF-β inhibitor LY2157299 monohydrate based on a pharmacokinetic/pharmacodynamic model. Br J Clin Pharmacol. 2014 May;77(5):796-807. PubMed PMID: 24868575; PubMed Central PMCID: PMC4004400.

7: Oyanagi J, Kojima N, Sato H, Higashi S, Kikuchi K, Sakai K, Matsumoto K, Miyazaki K. Inhibition of transforming growth factor-β signaling potentiates tumor cell invasion into collagen matrix induced by fibroblast-derived hepatocyte growth factor. Exp Cell Res. 2014 Aug 15;326(2):267-79. doi: 10.1016/j.yexcr.2014.04.009. Epub 2014 Apr 26. PubMed PMID: 24780821.

8: Giannelli G, Villa E, Lahn M. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014 Apr 1;74(7):1890-4. doi: 10.1158/0008-5472.CAN-14-0243. Epub 2014 Mar 17. Review. PubMed PMID: 24638984.

9: Dituri F, Mazzocca A, Peidrò FJ, Papappicco P, Fabregat I, De Santis F, Paradiso A, Sabbà C, Giannelli G. Differential Inhibition of the TGF-β Signaling Pathway in HCC Cells Using the Small Molecule Inhibitor LY2157299 and the D10 Monoclonal Antibody against TGF-β Receptor Type II. PLoS One. 2013 Jun 27;8(6):e67109. Print 2013. PubMed PMID: 23826206; PubMed Central PMCID: PMC3694933.

10: Bhola NE, Balko JM, Dugger TC, Kuba MG, Sánchez V, Sanders M, Stanford J, Cook RS, Arteaga CL. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest. 2013 Mar 1;123(3):1348-58. doi: 10.1172/JCI65416. Epub 2013 Feb 8. PubMed PMID: 23391723; PubMed Central PMCID: PMC3582135.

11: Bhattachar SN, Perkins EJ, Tan JS, Burns LJ. Effect of gastric pH on the pharmacokinetics of a BCS class II compound in dogs: utilization of an artificial stomach and duodenum dissolution model and GastroPlus,™ simulations to predict absorption. J Pharm Sci. 2011 Nov;100(11):4756-65. doi: 10.1002/jps.22669. Epub 2011 Jun 16. PubMed PMID: 21681753.

12: Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S, Trocóniz IF. Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. Eur J Cancer. 2008 Jan;44(1):142-50. Epub 2007 Nov 26. PubMed PMID: 18039567.

References

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539082/

http://www.ncbi.nlm.nih.gov/pubmed/26057634

https://clinicaltrials.gov/ct2/show/NCT0242334

Bhattachar, Shobha N.; Journal of Pharmaceutical Sciences 2011, 100(11), 4756-4765 

Investigational new drugs (2015), 33(2), 357-70.

//////////TGF-β, TGF-βRI kinase inhibitor, ALK5, galunisertib, LY2157299, cancer, clinical trials, PHASE 3

CC1=CC=CC(=N1)C2=NN3CCCC3=C2C4=C5C=C(C=CC5=NC=C4)C(=O)N
Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: