AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Worlddrugtracker, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his PhD from ICT ,1991, Mumbai, India, in Organic chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA as ADVISOR earlier GLENMARK LS Research centre as consultant,Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Prior to joining Glenmark, he worked with major multinationals like Hoechst Marion Roussel, now sSanofi, Searle India ltd, now Rpg lifesciences, etc. he is now helping millions, has million hits on google on all organic chemistry websites. His New Drug Approvals, Green Chemistry International, Eurekamoments in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 year tenure, good knowledge of IPM, GMP, Regulatory aspects, he has several international drug patents published worldwide . He gas good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, polymorphism etc He suffered a paralytic stroke in dec 2007 and is bound to a wheelchair, this seems to have injected feul in him to help chemists around the world, he is more active than before and is pushing boundaries, he has one lakh connections on all networking sites, He makes himself available to all, contact him on +91 9323115463, amcrasto@gmail.com

Application of On-Line NIR for Process Control during the Manufacture of Sitagliptin

 spectroscopy, SYNTHESIS  Comments Off on Application of On-Line NIR for Process Control during the Manufacture of Sitagliptin
Sep 122016
 
Abstract Image

The transamination-chemistry-based process for sitagliptin is a through-process, which challenges the crystallization of the active pharmaceutical ingredient (API) in a batch stream composed of multiple components. Risk-assessment-based design of experiment (DoE) studies of particle size distribution (PSD) and crystallization showed that the final API PSD strongly depends on the seeding-point temperature, which in turn relies on the solution composition.

To determine the solution composition, near-infrared (NIR) methods had been developed with partial least squares (PLS) regression on spectra of simulated process samples whose compositions were made by spiking each pure component, either sitagliptin free base (FB), water, isopropyl alcohol (IPA), dimethyl sulfoxide (DMSO), or isopropyl acetate (IPAc), into the process stream according to a DoE. An additional update to the PLS models was made by incorporating the matrix difference between simulated samples in lab and factory batches.

Overall, at temperatures of 20–35 °C, the NIR models provided a standard error of prediction (SEP) of less than 0.23 wt % for FB in 10.56–32.91 wt %, 0.22 wt % for DMSO in 3.77–19.18 wt %, 0.32 wt % for IPAc in 0.00–5.70 wt %, and 0.23 wt % for water in 11.20–28.58 wt %. After passing the performance qualification, these on-line NIR methods were successfully established and applied for the on-line analysis of production batches for compositions prior to the seeding point of sitagliptin crystallization.

 

 

str1

 

Application of On-Line NIR for Process Control during the Manufacture of Sitagliptin

Global Science, Technology and Commercialization, Merck Sharp & Dohme Corporation P.O. Box 2000, Rahway, New Jersey 07065, United States
Org. Process Res. Dev., 2016, 20 (3), pp 653–660
DOI: 10.1021/acs.oprd.5b00409

////////On-Line NIR,  Process Control, Sitagliptin

Share

Shamisha Resource Managment, Experts in Recruitment, Pharmaceutical and FMCG Consulting

 breakthrough designation  Comments Off on Shamisha Resource Managment, Experts in Recruitment, Pharmaceutical and FMCG Consulting
Sep 092016
 

str1

They specialise in Recruitment service in Food/FMCG/ Pharma, with offices in Ahmedabad and Mumbai .We have track record of accurate and prompt service in most ethical manner. I happen to be a Start- up specialist too. I am myself PhD in Pharmaceutical Technology from IIT , BHU and have held top management positions in  leadership role in P&G, Ranbaxy, Teva, Lupin, Novartis, JNJ,Colgate, Pfizer and can assure you of best recruitment solutions.

str1

Shamisha Resources Management

http://www.shamisha.in/

Shamisha Resources Management is founded by Technocrat Nina Sharma  who holds PhD in Pharmaceutical Sciences from IIT , BHU and has worked in Corporate for 30 years as Technical Head including of Global R&D Centres of Topmost MNC,s.

Shamisha Resources Management is focused on Pharmaceutical Industry and has experise in recruitment service for India and global recruitment.

We have offices in Ahmedabad and Mumbai and have experienced and trained Recruitment consultants who work in most methodical and ethical manner. Our Service standards are very high in promptness and accuracy. We cover technical functions like R&D,QA, RA ,Manufacturing  , Engineering, Project Management , IPR , Pharmacovigilance for both Formulations ,API and Sales and Marketing .We cover small molecules (ANDA) Speciality generics, biosimilars and large molecules. Our accuracy rate of fitment is 100%.Candidates are proposed only after thorough reference, background check and cultural fitment analysis as part of pre-screening programme at our end.

We are start-up specialists and support beyond recruitment solution in guiding on Organization structure and additional inputs for successful start up to operations.

img

PRESENTATION, SEE 12 PAGES

 

cid:image001.png@01D1AAA5.A706C6E0

http://www.shamisha.in/

Many thanks, Best Regards

Nina Sharma

Nina Sharma
Managing Director at Shamisha Resource Managment

img

M Pharm, PhD ( IIT, BHU)PGDMM ( UK)

Recruitment Services –  Standard terms

Pharma Consulting Scope

Managing Director

Shamisha Resources Management, 331-332 Sobo Centre

South Bopal, Ahmedabad 380058

+912717405999/6999/79999

+919974672915,+919820733290

nina1sharma@gmail.com

Mumbai Office  218 Marathon Max LBS Marg, Mulund West 022-40022560/61/62/63/64/65

WEBSITE……http://www.shamisha.in/

cid:image001.png@01D1AAA5.A706C6E0

str1

Experience

Managing Director

Shamisha Resource Managment

– Present (1 year 1 month)Mumbai, Ahmedabad

Recruitment/Manpower Consulting, Pharmaceutical and FMCG Consulting , New unit set up , Food and Hospitality

cid:image001.png@01D1AAA5.A706C6E0

WEBSITE……http://www.shamisha.in/

Director of Technical Services

Teva Pharma ( PGT Healthcare )

(1 year 11 months)Mumbai Area, India

Director

teva pharma

(2 years)

Director

teva pharma

(2 years)

Senior Vice President QA and Formulations

Biotechnology/Bionutrition

(1 year)

Biosimilars, Bionutrition and Diagnostics QA-Advanced markets

Biosimilars, Bionutrition Formulations R&D

Bionutrition Global Regulatory

Senior Director

JNJ

(1 year 8 months)

Head Tech Development

Novartis Healthcare Pvt Limited

(2 years 5 months)

Director R&D

Pfizer

(1 year)

Senior Manager

Searle India Ltd

(1 year 7 months)

Product Development Manager

Ranbaxy Laboratories

(2 years 7 months)

Product Dev. Manager

Ranbaxy

(3 years)

Product Dev. Manager

Ranbaxy

(3 years)

Product Dev. Manager

Ranbaxy

(3 years)

R&D Manager Healthcare

Proctor &Gamble India

(6 years 8 months)

Education

ABE UK

Ad Dip Buisness Management, Business Management

ABE, UK

HR Advance Dip, HR

Indian Institute of Technology (Banaras Hindu University), Varanasi

M.Pharm,PhD, Pharmacy

Education

M. Pharm ,PhD, Institute of Technology ,BHU
PGDMM , CIM UK

FULL RESUME

DR. NINA SHARMA

M.Pharm (Gold medalist)

PhD (Indian Institute of Technology, IIT, BHU, India), 1985

Post Graduate Diploma in Marketing Management (CIM, UK) 2007

Advanced Diploma in HR Management   (ABE UK) 2008

Advanced Diploma in Business Management (ABE, UK) 2009

(Top Paper Prize Global Award for two papers)

str1

FORMULATIONS EXPERT

Experienced in top level R&D Operations of Formulation Development, Global Portfolio and ­Resource management with successful  projects completion and Formulation launches   in   various therapeutic categories, for OTC, ANDA and 505(b) (2), NCE and Biosimilars in reputed organizations with repeated track record of achievement

High level Formulation Development skill for LVP.SVP.Tablets, Capsules,Dry Syrup,Liquids, Semisolids for domestic and International markets, QA and Regulatory for USFDA , MCA and semi-regulated markets

Formulation development ,Technology transfer and Production operations ,Quality and compliance expert with track record of successful new products launches  , portfolio expansion, Claims substantiation and Regulatory support, Tech transfer and supply chain transition management ,Project and team leadership to drive successful product launches within time and budget.

In  recent   roles  as Senior Director with Johnson and Johnson ( J&J )  have led  10 million USD  Formulation R &D project  for Early developmentand Late Development ANDA ,manufacturing of clinical supplies  for advanced market  and Integrated drug product development for Emerging markets of China ,Korea, Taiwan and Mexico; Director Technical and Scientific Affairs with Teva Pharma  Assignments with Novartis Healthcare Private Limited as R & D Head India – Global Research & Development Lab for OTC and Pfizer as Director (Head) for Formulation development Global R&D Center for Vet Medicine   were successful   projects in leadership position of Formulation R&D. Expertise in FMCG Sector as Head of Oral care Technology in India Global Formulation R&D Center, Procter and Gamble as R&D Manager Healthcare and Generics in Ranbaxy, Lupin and Searle.

Have published twenty research publications including four in international journals, US andEuropeanPatent holder across the illustrious career path.

Distinction of launching new products in conventional dosage forms, solids, liquids, sterile and semisolids and New Drug delivery systems covering full span of therapeutic area for infectious, psychiatry, cardiology, virology and biotechnology, pain and HIV, well versed with NDDS and Containment strategies.

An effective communicator   with excellent people management/ training skills and strong analytical, problem solving & organizational abilities   with proven track record of efficiently working with global partners.

 

CAREER HIGHLIGHTS

July 2015 to Present: Managing Director Shamisha Resources Management, Ahmedabad and Mumbai

WEBSITE……http://www.shamisha.in/

img

Sept 2013 to July 2015– Director Technical Services and Production operation for   Teva Pharma ( Procter &Gamble Teva Joint Venture PGT Healthcare )  , leading a team of 18 Managers /supervisors and Production staff of about 430 by end of 2014, handling commercialization of green field project of 600 crores.

Jan 2012 onwards Gresen Lehmann Group (GLG Singapore) consultant –successfully completed consultancy for Mckinsey, BCG on Pharmaceutical Development

July 2011 to Sep 2011 Senior VP Avesthagen Limited

July 2010 to July 2011 Senior Director Pharmaceutical Development and July 2008 to Feb   2010 Global Formulation   R&D Center at Johnson and Johnson

The responsibilities included set up and start up of Pharmaceutical development organization for Chem Pharm , Global NCE  Pre formulation and Late development for EU and US  and support emerging markets of India , China , Brazil , Mexico .

Asia Drug product development strategy and capability calculations for three Sites, project allocation and transition plan, global SOP, s and processes.

Creating   Road Map of Pharmaceutical Development till 2012 and integration

Since Sept 2005 Jan 2008 Novartis Healthcare Private Limited as Formulation R&D Head India – Global OTC Research &Development

Notable Deliverables

  • Led the effort in setting up the India Lab from Start up to operational build the team through recruitment and training
  • Head count increased to 47, established functions like Product development , Analytical, QA , Regulatory-CMC, Documentation ,CSV , I T   Clinical operations , Facility Management , EHS ,Purchase and administration
  • The Stability centre having 18 chambers can cater to all the four zones including Brazil.
  • Use of LIMS, Empower, SAS and fully validated 21 CFR compliant systems.
  • Product design and submissions for ANDA in advanced market domain.
  • Clinical operations (Phase III) through CRO (Siro, Lotus, and Reliance Life Sciences) in the area of Generic OTC molecules for advanced market. Studies executed by  Protocol preparation , approval ,quality audits and effective relation management , periodic reporting to global Clinical operations at Nyon ( Switzerland )
  • Played a key role in introducing Standard procedures (283 new) to make India Lab compliant with Global Quality operations standard and obtained USFDA Registration   for the Site. The standards introduced by India Site are adopted by two other global sites. Data generation as per USFDA , EMEA , ANVISA and MCA
  • Efficiently led the Information Security and Safety Audits with successful outcome.
  • Distinction of leading the Group Quality Audit which is a tough internal standard to meet and India is the only compliant Lab so far.
  • Planning and control of Revenue and Capital budget for India Site

 

HOLDS THE MERIT OF

  • US FDA Registration ,Twenty eight Pharmaceutical development and Stability testing projects in the area  Conventional Solids , Liquids semi solids and NDDS , Patches
  • Clinical operations, Technical writing, CMC Head count expansions within short time of lab operations.

Instrumental in collaborating with other Global Sites and local management to drive superior results.

  • Conducted successful studies on major global brands like Excedrin, Vibrocil, Theraflu, and Buckleys & Benefiber and applied the Project Management tools, innovative research based on market feedback. Milestones on delivery of Projects completed on time. Global project teams technical resource on global brands like Benefiber, Theraflu
  • Established a successful R&D Centre with high productivity and GMP within short time.

Apr 2004- August 20 05           Pfizer India Limited as Director

  • Planning and budgeting  for new research center in Formulations and API , won 9 million dollar investment (first ever for the Thane Site )
  • Awarded four NCE Enhancement projects in Liquids and solids from Sandwich through bidding process for US and Europe market.
  • Formed the core team of R&D Scientists and Managers
  • Conducted early development studies for NCE molecules, coordinated pharmacokinetic studies on anthelmentics, Doramectin pour on, Selamectin with Praziquantel spot on formulations.
  • Technical liaison with Indian Regulatory Authorities for fast approvals of import of API and formulations.
  • Led the effort in establishing the Organization and formulating plans for expansion
  • Pivotal in establishing linkages across Pfizer, organization processes for reporting and communication, Project management and control systems, and people development.

 Feb1999-March 2004        Colgate Palmolive India Ltd., General Manager-Oral Care

 Notable Deliverables

  • Technical business support for driving growth in India, Pakistan, Africa and Middle East through new products launches in Oral care technology
  • Managed and coordinated largest Anti caries Clinical trials on Oral formulation with Triclosan and Fluoride conducted in India on 6000 children over a period of 24 months through Dentists
  • Managed and coordinated Multicentre Clinical trials on Whitening Oral care formulations conducted in India for Indian and Australian market
  • Managed and coordinated Clinical trials on formulations with different polishing agents
  • Managed and coordinated Clinical trials on Toothpowder and toothbrushes
  • Effective coordination with Global Research centre for Protocol preparation, approval, servicing of sample, reporting to Global
  • Efficiently liasioned with Government bodies for strategic partnership on future specifications for RM and Finished products pertaining to Oral care.
  • Led the effort to design, develop and Re launch major flagship brands Colgate Dental cream five times, Colgate toothpowder three times and Fresh Energy Gel two variants re-launched three times each to claim back the lost market shares (approximately 900 crores business). Regained the lost market share by nine point
  • Launching of Low cost formula with Cibaca brand name which resulted in increase in 7% Market share, formulation developed indigenously
  • Entry to medium price segment by launching Colgate Herbal
  • Led the efforts in the development of several innovative forms of Oral care including stripe formulations, innovative affordable oral care formulation.
  • Initiated several cost saving projects and implemented margin improvement programs on formulations.
  • Successfully obtained Ayurvedic classification to support pain claim for Herbal dentifrice due for launch.
  • Conducted several training programs for management team of manufacturing locations on Quality as certified trainer.
  • Spearheaded functions for entry into Low and medium price segments retaining the Colgate Global standards, to compete in emerging markets dominated by local players.
  • Herbal segment through launch of Herbal toothpaste
  • Pivotal in designing Consumer qualified products to enter new market segment
  • Efficiently executed Quality improvement programs for raw material across six manufacturing locations in India and Nepal
  • Margin improvement programs on all the major brands like Colgate Dental cream, toothpowder and Gel formulations thereby resulting in huge savings viz. common base Technology for to drive margins, new crystal structure development for Calcium carbonate, process improved for Triclosan manufacture, introduction of liquid form of Sodium lauryl sulphate, powder form of Sodium silicate, use of Natural calcium carbonate in liquid dentifrice
  • Developed self-preservation technique for liquid dentifrice named as Gold standard by Piscataway Research center
  • Merit of introducing Quality standards and Guidelines in India Technology center
  • Participated in designing new plant for toothpaste manufacture
  • Designing Specifications for Bureau of Indian Standards for Toothpaste, toothpowder, Sorbitol and Calcium carbonate
  • Filed one patent on Coated Natural Calcium Carbonate Oral Care Toothpowder Composition
  • Distinction of being committee member on three BIS Committees for PCD 19 for 4 years
  • Received Colgate YCMAD Award for innovation four times
  • Nominated  team members and direct subordinates to win the award 19 times.

Sept ’1997-Jan1999   Searle India Ltd., Senior Manager (Pharmaceutical Development)

Notable Deliverables

·Instrumental in developing, reformulating & launching 12 products within fourteen months. Pivotal in developing

  • New products in area of conventional and specialized delivery system in therapeutic segment of cardiovascular, anti diabetic, gastrointestinal, anti-infective, neurological and biotechnology products.
  • Dosage forms like tablets, capsules, chewable, sustained release, dry syrups, liquid orals, suspensions using resin technology and injectables.
  • Played a key role in setting up a new department for international regulatory submissions, dossiers submitted for twenty molecules to contribute to export business.

July 1994 – Aug 1997   Lupin Laboratories Ltd as Senior Manager (Development)

Notable Deliverables

  • Led the effort in launching New Products Division ,  by developing & launching 8 new Herbal products through a new division of ethically promoted Natural products with 50 Sales personnel
  • Limited Phase III Clinicals for Anxiolytic and Appetite Stimulant formulation managed and coordinated through Clininvent
  • Periodontical Clinicals conducted and managed in Governmental dental College Mumbai
  • Claim support Clinicals on Ayurvedic Uterine tonic (U-Sedate) conducted at KEM Hospital Mumbai and Pune
  • Launched products like natural appetite stimulant, oral care, arthritis, rejuvenation, laxatives and digestive
  • Developed personal care products for export market, shampoos, hair oils, oral rinses, anti ageing cream all herbal/natural in nature
  • Successfully introduced bulk actives for exports, filed international patent on novel process for extraction of Hydroxyl Citric Acid from Garcinia.

 

Dec1991-June 1994 Ranbaxy Laboratories Ltd., as Product Development Manager

Notable Deliverables

  • Successfully developed and launched several conventional and specialty dosage forms as tablets, liquid oral, injectables, creams and led the team of product development scientists for India, Semi regulated markets of CIS , Indonesia , Malyasia and also Europe.
  • Managed and coordinated several BA/BE Studies for anti-infective in Ranbaxy and also Therapeutic Drug Monitoring Lab Mumbai.
  • Pivotal in supporting export market through regulatory submissions, product development and launch in the designated countries.
  • Significantly contributed in documentation for MCA approval.

March 1985-Nov 1991, Procter & Gamble India Ltd., as Research and Development Manager

  • Efficiently developed and launched indigenously developed Herbal products in OTC Category in

candy and syrup base

  • Actively participated in Clinical trials for OTC products (cough syrup)
  • Joining position Research Executive, promoted to Asstt. Manager, further promoted to Manager

Aug 80 -Dec ’84       Indian Institute of Technology, Benares Hindu University as Lecturer

Nov ’78-July ’80       Hamdard College of Pharmacy, University of Delhi as Lecturer

Academic Distinctions

Received Best Girl Student award in High School, University

Merit scholarship National Scholarship CSIR Scholarship –not availed

Memberships : Beureu of Indian Standards 2000-2004, IPA Life Member, CIM Member

Contact details  nina1sharma@gmail.com, 9820733290,9974672915,07940321865,02225797954

Address

Shamisha Resource Management  331-332 Sobo Centre South Bopal Ahmedabad

Ahmedabad  A92 Shaligram 3 Prahladnagar Ahmedabad

Mumbai  1104, Sovereign Hiranandani Gardens Powai Mumbai 400076

////////////Shamisha Resource Managment, Experts in Recruitment, Pharmaceutical ,  FMCG Consulting, NINA SHARMA

Share

New Q&A Document on the Visual Inspection of Parenterals available

 regulatory  Comments Off on New Q&A Document on the Visual Inspection of Parenterals available
Sep 092016
 

Image result for ECA's Visual Inspection Group

The ECA’s Visual Inspection Group has developed a new document with answers to frequently asked questions. This new Q&A document is now available for download on the Group’s website. Read more about frequently asked questions in the visual inspection.

http://www.gmp-compliance.org/enews_05500_New-Q-A-Document-on-the-Visual-Inspection-of-Parenterals-available_15266,15265,15221,15662,Z-PEM_n.html

The Visual Inspection Group, an Interest Group of the ECA Foundation, has developed a new document with frequently asked questions. The new Q&A document, which was compiled by the Group’s Board, is now available for a free of charge download on the website.

For compiling the document the members of the Group were asked to provide their questions in February. These questions were then evaluated and answered by the Board Members.

The new document is structured as follows:

  • Manual Inspection
  • Automated Inspection
  • Qualification / Validation
  • Test sets
  • Re-Qualification
  • AQL-Tests
  • Defect Categorisation
  • Specific Products
  • Regulatory Affairs
  • Process Control / SPC

Some examples for the questions and the respective answers:

The grey portion of fully automatic control is often checked manually, to return not clearly or fully tested products back to the inspection process. Is it allowed to carry out this testing with the automated inspection machine? From a GMP view, there are no restrictions. It is also important here that at the end a yield calculation and evaluation in the batch record appears. And there are also automated inspection systems that have already integrated the double inspection with multiple cameras.
In highly automated manufacturing lines for LVP flexible containers, the visual inspection process may/cannot comply to the standard visual inspection criteria e.g.: 5 sec inspection time, agitation of the container etc. Is this a compliance problem? The requirements like 5 sec inspection time required by pharmacopoeias are addressing manually performed visual inspection. If the visual inspection is performed automatically, it is the company’s responsibility to ensure that the inspection via camera systems is as effective as a manual visual inspection via a validation (e.g. Knapp Test).

 

Should the AQL be inspected by QC or production AQL manual inspection may be carried out by production staff (to avoid setting up a separate visual inspection team in QC) under a quality oversight or the quality unit. If performed by production operators, the AQL test should not be done by members of the team that was performing the 100 % visual inspection of the batch.

 

The new Q&A document is available for members in the members’ area on the Visual Inspection Group website free of charge. Membership in the Group is also free of charge and merely requires a registration.

The Good Practice Guide “Visual Inspection of medicinal products for parenteral use”, was also revised. The new Version 3.0 will be introduced at the ECA Conference Particles in Parenterals in Barcelona, Spain, from 28-29 September 2016. All delegates of the conference will receive a free copy.

///////// ECA,  Visual Inspection Group, parenteral use, Particles in Parenterals

Share

New Warning Letter of the FDA with the Focus on “Data Integrity”

 regulatory  Comments Off on New Warning Letter of the FDA with the Focus on “Data Integrity”
Sep 092016
 

The FDA has set the focus of its inspections on data integrity for quite some time already. The most recent Warning Letter addressed to a Chinese API manufacturer dated August 2016 clearly concentrates on the topic data integrity. Please find out more about the current FDA Warning Letter in this News.

http://www.gmp-compliance.org/enews_05557_New-Warning-Letter-of-the-FDA-with-the-Focus-on-%22Data-Integrity%22_15488,15844,Z-QCM_n.html

Again, the focus of FDA’s Warning Letter for the Chinese API manufacturer Zhejiang Medicine Co. Ltd. dated 4th August 2016 is on the lack of data integrity. Among other things, records of activities were made not at the time when they have been performed. Moreover, original data have been deleted. A number of alarming findings were discovered in the course of the FDA inspection in June 2015.

The FDA is now expecting concrete measures (“Data Integrity Remediation”) from the company. For this, the FDA expressly recommended to retain qualified, external consultants. Among the measures to be taken:

A – A comprehensive investigation of the extent of incorrect data
1. An extensive plan for the execution of the investigation
2. Interviews of current and former employees to clarify the root cause of incorrect data
3. An assessment of the extent of data integrity deficits.
4. A comprehensive retrospective assessment of the performance of analytical testing.

B – A current risk assessment of the possible effects of the deficiencies identified on the quality of the medicinal products, up to the risk to patients!

C – A management strategy for the implementation of CAPA plans.

All in all, there were great concerns about the authenticity and reliability of the data produced in that company.

To find out more access the complete Warning Letter for Zhejiang Medicine Co. Ltd.

Image result for Zhejiang Medicine Co. Ltd,

//////////Zhejiang Medicine Co. Ltd, Warning Letter,  FDA, Data Integrity

Share

USP Draft Chapter <771> Ophthalmic Products – Quality Tests

 USP  Comments Off on USP Draft Chapter <771> Ophthalmic Products – Quality Tests
Sep 092016
 

Image result for Ophthalmic Products - Quality Tests

In the Pharmacopeial Forum 42(4) [Jun-Jul 2016] a revised draft of general chapter <771> Ophthalmic Products-Quality Tests has been published for comment. Read more about the draft USP chapter <771> describing quality tests for opthalmic dosage forms.

http://www.gmp-compliance.org/enews_05463_USP-Draft-Chapter–771–Ophthalmic-Products—Quality-Tests_15493,Z-PKM_n.html

In the Pharmacopeial Forum 42(4) [Jun-Jul 2016] a revised draft of general chapter <771> Ophthalmic Products-Quality Testshas been published for comment. The chapter has been previously published for comment in PF 41(5) [Sept.–Oct. 2015] and has become official on May 1, 2016 (USP 39). On the basis of comments received, the USP General Chapters—Dosage Forms Expert Committee is proposing to make the following changes to this chapter:

1. Universal Tests, Identification: If the identification test is nonspecific, at least two orthogonal nonspecific tests should be used.

2. Universal Tests, Sterility: The sentence reading, in part, “the immediate containers for ophthalmic products be sealed and tamper proof” is being replaced with a cross-reference to the subsection of the chapter <771> Universal Tests, Container–Closure Integrity.

3. Universal Tests, Leachables and Extractables: Information is being added when the evaluation of Leachables and Extractables is done: This assessment is done in a case-by-case approach during product development and re-evaluated when any changes are made to the product including, but not restricted to, changes in manufacturing process, formulation, and packaging material.

4. Specific Tests, Drop Size: Information is being added that the determination of drop size can be done by any appropriated validated procedure.

Additionally, minor editorial changes have been made to update the chapter to current USP style.

Comment deadline is September 30, 2016.

Following your free registration on the USP Pharmacopeial Forum website you can read the complete draft of general chapter <771>.

////////USP Draft Chapter,  <771>,  Ophthalmic Products, Quality Tests

Share

Organic Process Research & Development Conference 17 – 19 October 2016, Andel Hotel, Prague, Czech Republic

 CONFERENCE  Comments Off on Organic Process Research & Development Conference 17 – 19 October 2016, Andel Hotel, Prague, Czech Republic
Sep 072016
 

STR1

Organic Process Research & Development Conference

17 – 19 October 2016

Andel Hotel, Prague, Czech Republic

The 36th Organic Process Research & Development Conference will consist of presentations from international chemists covering all aspects of Process Development.

The speakers will discuss the latest issues in synthetic route design, development and optimisation, reactor design, work up and purification, crystallisation, catalysis, and quality and regulatory issues.

The presentations will be from either speakers within the chemical industry or academics with a strong link to industrial process development, so the material presented will be of particular relevance to all chemists and biochemists in industry, as well as students considering a career in industry.

See provisional programme and registration costs.

Short Course – An Organic Chemist’s Guide to Process Safety?
18 October 2016, 14.00 – 17.00

Speakers include:
Dr David Daniels, Pfizer, UK
Development of a Multi-Kilogram Synthesis of PF-04136309: A Banquet for the Organometallic Chemist

Image result for Dr David Daniels PFIZER

 

Dr Stefan Mix, Almac Group, UK,
Shortening the Path – Pharmaceutical Materials from Enzymatic Reactions

Stefan Mix

 

Dr Antonio Zanotti-Gersoa, Johnson Matthey Catalysis PLC, UK
Homogeneous Hydrogenation Catalysis: Beyond Chiral Applications

 

Dr Andreas Wachtler, Merck KGaA, Germany
Praziquantel: An Old Product with New Challenges!

Dr Denise Andersen, Gilead Science Inc, USA
Synthesis of Evofosfamide: An Example of Rapid Impurity Identification and Control

Dr Ian Grayson, Evonik Nutrition & care GmbH, Germany
Manufacture of Amino Acids on an Industrial Scale: Development of an Efficient and Sustainable Process

See our website for updated speaker list.

BROCHURE

https://scientificupdate.co.uk/images/eventlist/brochures/8150_su_oprd_conference_brochure_oct_2016_-_prague(v5fw)_1460473621.pdf?utm_source=Scientific+Update+News&utm_campaign=a68b23623d-OPRD_Prague&utm_medium=email&utm_term=0_08c5e1fb69-a68b23623d-78584097

Join a FREE WORKSHOP organized by Johnson Matthey, on Wednesday 19th October during the conference, which will examine both fundamental and applied aspects of homogeneous and heterogeneous catalysis.  Insights into the latest advancements will be covered by their experts.

TESTIMONIALS
“Great venue, good diversity of talks, great networking opportunities.” Merck
“Great atmosphere, nice discussions, good presentations.”
Boehringer Ingelheim
“Always entertaining and full of useful tips/news.”
Sanofi
“Excellent as ever, great venue, organisation and science.”
Pfizer
“The lectures are of very high quality, and there is a broad coverage from early to late phase chemical development.  Process Chemists of all experience levels will benefit from attending this conference.”
Novartis

Gold Sponsors

Evonik is a global specialty chemicals company with a unique portfolio of products and services for the pharmaceutical industry.

 

Our mailing address is:

Scientific Update

Maycroft Place

Stone Cross

Mayfield, East SussexTN20 6EW

United Kingdom

Click here to view the brochure

str2

STR1

///////////Organic Process Research & Development Conference, 17 – 19 October 2016, Andel Hotel, Prague, Czech Republic

Share

CHIRAL INDIA 2016, 5th International Conference & Exhibition Nov 8-9 2016, Holiday Inn, Mumbai, India

 CONFERENCE  Comments Off on CHIRAL INDIA 2016, 5th International Conference & Exhibition Nov 8-9 2016, Holiday Inn, Mumbai, India
Sep 072016
 

str1

 

India's only conference focusing on new chiral technologies for pharmaceutical fine chemicals. The event is a unique platform to learn about recent advances in chiral chemistry, technology and application.

Chiral India series which began in 2012 has now grown into a major must-attend event for the Pharmaceutical industry. This platform is the most popular chiral technology platform bringing together the top experts from China, Canada, USA, Japan, India and other countries to present the latest developments in chiral drug developments and brainstorm with leading R&D personnel from Indian pharmaceutical industry.

The fifth edition of Chiral India to be held on 8-9 November 2016, at Holiday Inn (Mumbai), follows the success of previous four annual editions (2012, 2013, 2014 and 2015) and is now an event awaited by R&D professionals across the industry.

International panel of Chiral experts will address on key Themes
  • Asymmetric hydrogenations: New directions
  • Chiral switches: Development of single enantiomer drugs
  • Chiral tool kit in new drug development
  • Organo molecular catalysts
  • Enzymatic processes for new chiral drug synthesis
  • Chiral chemistry in natural product synthesis
  • Chiral catalysis: An overview of recent advances
  • Chiral drugs: New regulatory directions
  • Chiral separation technologies
  • Flow reactions for chiral drug development

R  Rajagopal

+9198211 28341

rraj@chemicalweekly.com

kiran@chemicalweekly.com

Dr. R. Rajagopal B-602, Godrej Coliseum Tel: +91 22 24044477
Editorial Advisor K.J. Somaiya Hospital Road Fax: +91 22 24044450
Chemical Weekly Sion (East) Mumbai 400 022 www.chemicalweekly.com

DOWNLOAD BROCHURE…..

Please use http://www.chiralindia.com/Brochure.pdf link to download the Brochure.

Our website URL is www.chiralindia.com

 

Oganised By

 

str2

str1

 

SCROLL USING MOUSE TO VIEW 5 PAGES

////////CHIRAL INDIA 2016, 5th International Conference, Exhibition,  Nov 8-9,  2016, Holiday Inn, Mumbai, India

Share

Diphenhydramine Hydrochloride, Use of Flow Synthesis

 flow synthesis  Comments Off on Diphenhydramine Hydrochloride, Use of Flow Synthesis
Sep 062016
 
Image result for Diphenhydramine hydrochloride
Diphenhydramine Hydrochloride
Image result for Diphenhydramine Hydrochloride
Image result for Diphenhydramine Hydrochloride
REGULAR SYNTHESIS
Figure
FLOW SYNTHESIS
 Image result for Diphenhydramine Hydrochloride
Diphenhydramine hydrochloride is the active pharmaceutical ingredient in several widely used medications (e.g., Benadryl, Zzzquil, Tylenol PM, Unisom), and its worldwide demand is higher than 100 tons/year.
In 2013, Jamison and co-workers developed a continuous flow process for the synthesis of minimizing waste and reducing purification steps and production time with respect to existing batch synthetic routes (Scheme 1).
In the optimized process, chlorodiphenylmethane 1 and dimethylethanolamine 2 were mixed neat and pumped into a 720 μL PFA tube reactor (i.d. = 0.5 mm) at 175 °C with a residence time of 16 min. Running the reaction above the boiling point of and without any solvent resulted in high reaction rate. Product 3, obtained in the form of molten salt (i.e., above the melting point of the salt), could be easily transported in the flow system, a procedure not feasible on the same scale under batch conditions.
The reactor outcome was then combined with preheated NaOH 3 M to neutralize ammonium salts. After quenching, neutralized tertiary amine was extracted with hexanes into an inline membrane separator. The organic layer was then treated with HCl (5 M solution in iPrOH) in order to precipitate diphenhydramine hydrochloride 3 with an overall yield of 90% and an output of 2.4 g/h.
Image result for Diphenhydramine hydrochloride
REF

Snead, D. R.; Jamison, T. F. Chem. Sci. 2013, 4, 2822, DOI: 10.1039/c3sc50859e

Image result for 10.1039/c3sc50859e
A CLIP

In 2013 the Jamison group reported the flow synthesis of the important H1-antagonist diphenhydramine·HCl (92) showcasing the potential of modern flow chemistry to adhere to green chemistry principles (minimal use of organic solvents, atom economy etc.) . The synthetic strategy relied on reacting chlorodiphenylmethane (93) with an excess of dimethylaminoethanol (94) via a nucleophilic substitution reaction (Scheme ).

[1860-5397-11-134-i16]
Scheme : Flow synthesis of diphenhydramine.HCl (92).

As both starting materials are liquid at ambient temperature the use of a solvent could be avoided allowing direct generation of the hydrochloride salt of 92 in a high temperature reactor (175 °C) with a residence time of 16 min. Conveniently at the same reaction temperature the product was produced as a molten paste (m.p. 168 °C) which enabled the continued processing of the crude product circumventing any clogging of the reactor by premature crystallisation. Analysis of the crude extrude product revealed the presence of minor impurities (<10%) even when stoichiometric amounts of 94 were used, consequently an in-line extraction process was developed. Additional streams of aqueous sodium hydroxide (3 M, preheated) and hexane were combined with the crude reaction product followed by passage through a membrane separator. The hexane layer was subsequently collected and treated with hydrochloric acid (5 M in IPA) leading to the precipitation of diphenhydramine hydrochloride (92) in high yield (~90%) and purity (~95%). Furthermore, options to further reduce waste generated during the purification sequence are presented by combining hot IPA with the crude flow stream leading to the isolation of the target compound (92·HCl) by direct crystallisation in the collection vessel (yield 71–84%, purity ~93%, productivity 2.42 g/h).

 

STR1

 

David Snead

David Snead

    dsnead at mit dot edu
Ph.D. The University of Florida, 2010
with Prof. Sukwon Hong
B.S. The University of North Carolina at Chapel Hill, 2005
with Prof. Joseph DeSimone

 

Image result for Timothy F. Jamison

Timothy F. Jamison

Professor of Chemistry
Massachusetts Institute of Technology
Department of Chemistry
77 Massachusetts Ave., Bldg 18-590
Cambridge, MA 02139

Phone: (617) 253-2135
Fax: (617) 324-0253
Email: tfj at mit dot edu

Curriculum Vitae
Tim Jamison was born in San Jose, CA and grew up in neighboring Los Gatos, CA. He received his undergraduate education at the University of California, Berkeley. A six-month research assistantship at ICI Americas in Richmond, CA under the mentorship of Dr. William G. Haag was his first experience in chemistry research. Upon returning to Berkeley, he joined the laboratory of Prof. Henry Rapoport and conducted undergraduate research in his group for nearly three years, the majority of which was under the tutelage of William D. Lubell (now at the University of Montreal). A Fulbright Scholarship supported ten months of research in Prof. Steven A. Benner’s laboratories at the ETH in Zürich, Switzerland, and thereafter he undertook his PhD studies at Harvard University with Prof. Stuart L. Schreiber. He then moved to the laboratory of Prof. Eric N. Jacobsen at Harvard University, where he was a Damon Runyon-Walter Winchell postdoctoral fellow. In July 1999, he began his independent career at MIT, where his research program focuses on the development of new methods of organic synthesis and their implementation in the total synthesis of natural products.

 

str2

 

Image result for Diphenhydramine Hydrochloride

IR

 

MASS

13C NMR

RAMAN

 

//////////////////////Diphenhydramine Hydrochloride,  Flow Synthesis, FLOW CHEMISTRY
Share

ACT-334441, Cenerimod an S1P receptor 1 agonist

 phase 2, Uncategorized  Comments Off on ACT-334441, Cenerimod an S1P receptor 1 agonist
Sep 022016
 

 

img

ACT-334441

Cenerimod

UNII-Y333RS1786; Y333RS1786

S1P receptor 1 agonist

CAS 1262414-04-9
Chemical Formula: C25H31N3O5
Exact Mass: 453.22637

Actelion Pharmaceuticals Ltd.

Martin Bolli, Cyrille Lescop, Boris Mathys,Keith Morrison, Claus Mueller, Oliver Nayler,Beat Steiner,

(S)-3-(4-(5-(2-cyclopentyl-6-methoxypyridin-4-yl)-1,2,4-oxadiazol-3-yl)-2-ethyl-6-methylphenoxy)propane-1,2-diol

(2S)-3-[4-[5-(2-cyclopentyl-6-methoxypyridin-4-yl)-1,2,4-oxadiazol-3-yl]-2-ethyl-6-methylphenoxy]propane-1,2-diol

(S)-3-(4-(5-(2-Cyclopentyl-6-methoxypyridin-4-yl)-1,2,4-oxadiazol-3-yl)-2-ethyl-6-methylphenoxy)propane-1,2-diol

(S)-3-{4-[5-(2-Cyclopentyl-6-methoxy-pyridin-4-yl)-[1,2,4]oxadiazol-3-yl]-2-ethyl-6-methyl-phenoxy}-propane-1,2-diol

Mechanism Of Action Sphingosine 1 phosphate receptor modulator
Who Atc Codes L03A-X (Other immunostimulants)
Ephmra Codes L3A (Immunostimulating Agents Excluding Interferons)
Indication Systemic Lupus Erythematosus

Cenerimod is a potent and orally active immunomodulator, exhibited EC50 value of 2.7 nM. Cenerimod is an agonist for the G protein-coupled receptor S1 P1/EDG1 and has a powerful and long-lasting immunomodulating effect which is achieved by reducing the number of circulating and infiltrating T- and B-lymphocytes, without affecting their maturation, memory, or expansion. Cenerimod may be useful for prevention or treatment of diseases associated with an activated immune system

CENERIMOD

ACT-334441; lysosphingolipid receptor agonist – Actelion; S1P1 receptor modulator – Actelion; Second selective S1P1 receptor agonist – Actelion; Sphingosine 1 phosphate receptor modulators – Actelion; Sphingosine 1-phosphate receptor 1 agonists – Actelion

  • Mechanism of Action Lysosphingolipid receptor agonists
  • Highest Development Phases
  • Phase I/II Systemic lupus erythematosus

Most Recent Events

  • 09 Jun 2016 Actelion terminates a phase I drug interaction trial for Systemic lupus erythematosus (In volunteers) in France (NCT02479204)
  • 22 Dec 2015 Phase-I/II clinical trials in Systemic lupus erythematosus in Ukraine, Belarus (PO) (NCT02472795)
  • 24 Sep 2015 Phase-I/II clinical trials in Systemic lupus erythematosus in USA (PO) (NCT02472795)
# Nct Number Title Recruitment Conditions Interventions Phase
1 NCT02472795 Clinical Study to Investigate the Biological Activity, Safety, Tolerability, and Pharmacokinetics of ACT-334441 in Subjects With Systemic Lupus Erythematosus Recruiting Systemic Lupus Erythematosus Drug: ACT-334441|Drug: Placebo Phase 2 Actelion
2 NCT02479204 Drug Interaction Study of ACT-334441 With Cardiovascular Medications in Healthy Subjects Suspended Healthy Subjects Drug: ACT-334441 2 mg|Drug: ACT-334441 4 mg|Drug: placebo|Drug: atenolol|Drug: diltiazem ER Phase 1 Actelion

str1

UNII-Y333RS1786.png

STR2 STR3

The human immune system is designed to defend the body against foreign micro-organisms and substances that cause infection or disease. Complex regulatory mechanisms ensure that the immune response is targeted against the intruding substance or organism and not against the host. In some cases, these control mechanisms are unregulated and autoimmune responses can develop. A consequence of the uncontrolled inflammatory response is severe organ, cell, tissue or joint damage. With current treatment, the whole immune system is usually suppressed and the body’s ability to react to infections is also severely compromised. Typical drugs in this class include azathioprine, chlorambucil, cyclophosphamide, cyclosporin, or methotrexate. Corticosteroids which reduce inflammation and suppress the immune response, may cause side effects when used in long term treatment. Nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce pain and inflammation, however, they exhibit considerable side effects. Alternative treatments include agents that activate or block cytokine signaling.

Orally active compounds with immunomodulating properties, without compromising immune responses and with reduced side effects would significantly improve current treatments of uncontrolled inflammatory diseases.

In the field of organ transplantation the host immune response must be suppressed to prevent organ rejection. Organ transplant recipients can experience some rejection even when they are taking immunosuppressive drugs. Rejection occurs most frequently in the first few weeks after transplantation, but rejection episodes can also happen months or even years after transplantation. Combinations of up to three or four medications are commonly used to give maximum protection against rejection while minimizing side effects. Current standard drugs used to treat the rejection of transplanted organs interfere with discrete intracellular pathways in the activation of T-type or B-type white blood cells. Examples of such drugs are cyclosporin, daclizumab, basiliximab, everolimus, or FK506, which interfere with cytokine release or signaling; azathioprine or leflunomide, which inhibit nucleotide synthesis; or 15-deoxyspergualin, an inhibitor of leukocyte differentiation.

The beneficial effects of broad immunosuppressive therapies relate to their effects; however, the generalized immunosuppression which these drugs produce diminishes the immune system’s defense against infection and malignancies. Furthermore, standard immunosuppressive drugs are often used at high dosages and can cause or accelerate organ damage.

SYNTHESIS

STR1

PATENT

https://www.google.com/patents/WO2011007324A1?cl=zh

The human immune system is designed to defend the body against foreign microorganisms and substances that cause infection or disease. Complex regulatory mechanisms ensure that the immune response is targeted against the intruding substance or organism and not against the host. In some cases, these control mechanisms are unregulated and autoimmune responses can develop. A consequence of the uncontrolled inflammatory response is severe organ, cell, tissue or joint damage. With current treatment, the whole immune system is usually suppressed and the body’s ability to react to infections is also severely compromised. Typical drugs in this class include azathioprine, chlorambucil, cyclophosphamide, cyclosporin, or methotrexate. Corticosteroids which reduce inflammation and suppress the immune response, may cause side effects when used in long term treatment. Nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce pain and inflammation, however, they exhibit considerable side effects. Alternative treatments include agents that activate or block cytokine signaling.

Orally active compounds with immunomodulating properties, without compromising immune responses and with reduced side effects would significantly improve current treatments of uncontrolled inflammatory diseases.

In the field of organ transplantation the host immune response must be suppressed to prevent organ rejection. Organ transplant recipients can experience some rejection even when they are taking immunosuppressive drugs. Rejection occurs most frequently in the first few weeks after transplantation, but rejection episodes can also happen months or even years after transplantation. Combinations of up to three or four medications are commonly used to give maximum protection against rejection while minimizing side effects. Current standard drugs used to treat the rejection of transplanted organs interfere with discrete intracellular pathways in the activation of T-type or B-type white blood cells. Examples of such drugs are cyclosporin, daclizumab, basiliximab, everolimus, or FK506, which interfere with cytokine release or signaling; azathioprine or leflunomide, which inhibit nucleotide synthesis; or 15-deoxyspergualin, an inhibitor of leukocyte differentiation.

The beneficial effects of broad immunosuppressive therapies relate to their effects; however, the generalized immunosuppression which these drugs produce diminishes the immune system’s defense against infection and malignancies. Furthermore, standard immunosuppressive drugs are often used at high dosages and can cause or accelerate organ damage.

Description of the invention

The present invention provides novel compounds of Formula (I) that are agonists for the G protein-coupled receptor S1 P1/EDG1 and have a powerful and long-lasting immunomodulating effect which is achieved by reducing the number of circulating and infiltrating T- and B-lymphocytes, without affecting their maturation, memory, or expansion. The reduction of circulating T- / B-lymphocytes as a result of S1 P1/EDG1 agonism, possibly in combination with the observed improvement of endothelial cell layer function associated with S1 P1/EDG1 activation, makes such compounds useful to treat uncontrolled inflammatory diseases and to improve vascular functionality. Prior art document WO 2008/029371 discloses compounds that act as S1 P1/EDG1 receptor agonists and show an immunomodulating effect as described above. Unexpectedly, it has been found that the compounds of the present invention have a reduced potential to constrict airway tissue/vessels when compared to compounds of the prior art document WO 2008/029371. The compounds of the present invention therefore demonstrate superiority with respect to their safety profile, e.g. a lower risk of bronchoconstriction.

Examples of WO 2008/029371 , which are considered closest prior art analogues are shown in Figure 1.

Figure imgf000004_0001

Figure 1 : Structure of Examples of prior art document WO 2008/029371 , which are considered closest analogues to the compounds of the present invention.

The data on the constriction of rat trachea rings compiled in Table 1 illustrate the superiority of the compounds of the present invention as compared to compounds of prior art document WO 2008/029371.

For instance, the compounds of Example 1 and 6 of the present invention show a significantly reduced potential to constrict rat trachea rings when compared to the compounds of prior art Examples 222 and 226 of WO 2008/029371 , respectively. Furthermore, the compounds of Example 1 and 6 of the present invention also show a reduced potential to constrict rat trachea rings when compared to the compounds of prior art Examples 196 and 204 of WO 2008/029371 , respectively. These data demonstrate that compounds wherein R1 represents 3-pentyl and R2 represents methoxy are superior compared to the closest prior art compounds of WO 2008/029371 , i.e. the compounds wherein R1 represents an isobutyl and R2 represents methoxy or wherein R1represents methyl and R2 represents 3-pentyl. Moreover, also the compound of Example 16 of the present invention, wherein R1 is 3-methyl-but-1-yl and R2 is methoxy, exhibits a markedly reduced potential to constrict rat trachea rings when compared to its closest analogue prior art Example 226 of WO 2008/029371 wherein R1 is isobutyl and R2 is methoxy.

The unexpected superiority of the compounds of the present invention is also evident from the observation that the compounds of Example 2 and 7 of the present invention show a markedly reduced potential to constrict rat trachea rings when compared to the compounds of prior art Examples 229 and 233 of WO 2008/029371 , respectively. This proves that compounds wherein R1represents cyclopentyl and R2 represents methoxy are superior compared to the closest prior art compounds of WO 2008/029371 , i.e. the compounds wherein R1 represents methyl and R2 represents cyclopentyl.

Also, the compound of Example 3 of the present invention exhibits the same low potential to constrict rat trachea rings as its S-enantiomer, i.e. the compound of Example 2 of the present invention, indicating that the configuration at this position has no significant effect on trachea constriction. Furthermore, also Example 21 of the present invention exhibits the same low potential to constrict rat trachea rings as present Example 2, which differs from Example 21 only by the linker A (forming a 5-pyridin-4-yl-[1 ,2,4]oxadiazole instead of a 3- pyridin-4-yl-[1 ,2,4]oxadiazole). This indicates that also the nature of the oxadiazole is not critical regarding trachea constriction.

Table 1 : Rat trachea constriction in % of the constriction induced by 50 mM KCI. n.d. = not determined. For experimental details and further data see Example 33.

Figure imgf000005_0001
Figure imgf000006_0002

result obtained at a compound concentration of 300 nM.

The compounds of the present invention can be utilized alone or in combination with standard drugs inhibiting T-cell activation, to provide a new immunomodulating therapy with a reduced propensity for infections when compared to standard immunosuppressive therapy. Furthermore, the compounds of the present invention can be used in combination with reduced dosages of traditional immunosuppressant therapies, to provide on the one hand effective immunomodulating activity, while on the other hand reducing end organ damage associated with higher doses of standard immunosuppressive drugs. The observation of improved endothelial cell layer function associated with S1 P1/EDG1 activation provides additional benefits of compounds to improve vascular function.

The nucleotide sequence and the amino acid sequence for the human S1 P1/EDG1 receptor are known in the art and are published in e.g.: HIa, T., and Maciag, T., J. Biol

Chem. 265 (1990), 9308-9313; WO 91/15583 published 17 October 1991 ; WO 99/46277 published 16 September 1999. The potency and efficacy of the compounds of Formula (I) are assessed using a GTPγS assay to determine EC5O values and by measuring the circulating lymphocytes in the rat after oral administration, respectively (see in experimental part). i) In a first embodiment, the invention relates to pyridine compounds of the Formula (I),

Figure imgf000006_0001

Formula (I)

 

PATENT

WO 2013175397

https://www.google.com/patents/WO2013175397A1?cl=en

Pyridine-4-yl derivatives of formula (PD),

Figure imgf000002_0001

Formula (PD) A represents

Figure imgf000002_0002

(the asterisks indicate the bond that is linked to the pyridine group of Formula (PD));

Ra represents 3-pentyl, 3-methyl-but-1-yl, cyclopentyl, or cyclohexyl;

Rb represents methoxy;

Rc represents 2,3-dihydroxypropoxy, -OCH2-CH(OH)-CH2-NHCO-CH2OH,

-OCH2-CH(OH)-CH2N(CH3)-CO-CH2OH, -NHS02CH3, or -NHS02CH2CH3; and

Rd represents ethyl or chloro.)

disclosed in WO201 1007324, have immunomodulating activity through their S1 P1/EDG1 receptor agonistic activity. Therefore, those pyridine-4-yl derivatives are useful for prevention and / or treatment of diseases or disorders associated with an activated immune system, including rejection of transplanted organs such as kidney, liver, heart, lung, pancreas, cornea, and skin; graft-versus-host diseases brought about by stem cell transplantation; autoimmune syndromes including rheumatoid arthritis, multiple sclerosis, inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis, psoriasis, psoriatic arthritis, thyroiditis such as Hashimoto’s thyroiditis, uveo-retinitis; atopic diseases such as rhinitis, conjunctivitis, dermatitis; asthma; type I diabetes; post-infectious autoimmune diseases including rheumatic fever and post-infectious glomerulonephritis; solid cancers and tumor metastasis. 2-Cyclopentyl-6-methoxy-isonicotinic acid, which is also disclosed in WO201 1007324, is a useful intermediate for the synthesis of the pyridine-4-yl derivatives of formula (PD), wherein Ra is a cyclopentyl group.

In the process described in WO201 1007324, 2-cyclopentyl-6-methoxy-isonicotinic acid was prepared according to the following reaction scheme 1 :

Figure imgf000003_0001

Compound D Compound E

Rieke Zinc: cyclopentylzinc bromide;

PdCI2(dppf)dcm: 1 ,1 ‘-Bis(diphenylphosphino)ferrocene-palladium(ll)dichloride

dichloromethane complex

However, the abovementioned process has drawbacks for larger scale, i.e. industrial scale synthesis of 2-cyclopentyl-6-methoxy-isonicotinic acid, for the following reasons:

a) The commercially available starting material, 2,6-dichloro-isonicotinic acid (Compound A) is expensive.

b) The conversion of Compound C to Compound D is cost-intensive. The reaction has to be performed under protective atmosphere with expensive palladium catalysts and highly reactive and expensive Rieke zinc complex. Such synthesis steps are expensive to scale up and it was therefore highly desired to find alternative synthesis methods.

Even though Goldsworthy, J. Chem. Soc. 1934, 377-378 discloses the preparation of 1 -cyclopentylethanone, which is a key building block in the new process of the present invention, by using ethyl 1 -acetoacetate as a starting material, this synthesis was far from being suitable in an industrial process. The reported yield was low (see also under “Referential Examples” below). Scheme 2

Figure imgf000004_0001

ethyl 1 -acetylcyclo- 1-cyclopentyl- pentanecarboxylate ethanone

Besides the early work by Goldsworthy there are several recent examples for the preparation of 1 -cyclopentylethanone described in the literature. Such examples include:

1 ) Addition of methyl lithium to a N-cyclopentanecarbonyl-N,0-dimethylhydroxylamine at -78°C in a yield of 77%. US2006/199853 A1 , 2006 and US2006/223884 A1 , 2006.

2) Addition of methyl lithium to a cyclopentyl carboxylic acid in diethylether at -78°C in a yield of 81 %. J. Am. Chem. Soc, 1983, 105, 4008-4017.

3) Addition of methylmagnesiumbromide to cyclopentanecarbonitrile.

Bull. Soc. Chim. Fr., 1967, 3722-3729.

4) Oxidation of 1 -cyclopentylethanol with chromtrioxide. US5001 140 A1 , 1991.

WO2009/71707 A1 , 2009.

5) Addition of cyclopentylmagnesium bromide to acetic anhydride at -78 °C with a yield of 54%. WO2004/74270 A2, 2004.

6) Synthesis of 1-cyclopentylethanone in 5 steps from cyclopentanone. Zhang, Pang; Li, Lian-chu, Synth. Commun., 1986, 16, 957-966.

However, the processes described in the above-listed publications are not efficient for scale-up since they require cryogenic temperatures, expensive starting materials, toxic reagents or many steps. The lack of an efficient process to manufacture 1 -cyclopentylethanone is further also mirrored by the difficulty in sourcing this compound on kilogram scale for a reasonable price and delivery time. Therefore, the purpose of the present invention is to provide a new, efficient and cost effective process for the preparation of 2-cyclopentyl-6-methoxy-isonicotinic acid, which is suitable for industrial scale synthesis.

Patent

https://patentscope.wipo.int/search/en/detail.jsf?docId=US133347630&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

Disclosed in WO2011007324, have immunomodulating activity through their S1P1/EDG1 receptor agonistic activity. Therefore, those pyridine-4-yl derivatives are useful for prevention and/or treatment of diseases or disorders associated with an activated immune system, including rejection of transplanted organs such as kidney, liver, heart, lung, pancreas, cornea, and skin; graft-versus-host diseases brought about by stem cell transplantation; autoimmune syndromes including rheumatoid arthritis, multiple sclerosis, inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis, psoriasis, psoriatic arthritis, thyroiditis such as Hashimoto’s thyroiditis, uveo-retinitis; atopic diseases such as rhinitis, conjunctivitis, dermatitis; asthma; type I diabetes; post-infectious autoimmune diseases including rheumatic fever and post-infectious glomerulonephritis; solid cancers and tumor metastasis. 2-Cyclopentyl-6-methoxy-isonicotinic acid, which is also disclosed in WO2011007324, is a useful intermediate for the synthesis of the pyridine-4-yl derivatives of formula (PD), wherein Ra is a cyclopentyl group.

      In the process described in WO2011007324, 2-cyclopentyl-6-methoxy-isonicotinic acid was prepared according to the following reaction scheme 1:

Rieke Zinc: cyclopentylzinc bromide;
PdCl2(dppf)dcm: 1,1′-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex

 

 

EXAMPLES

Example 1a

1-Cyclopentylethanone


      A mixture of 1,4 dibromobutane (273 g, 1 eq.), tetrabutylammonium bromide (20 g, 0.05 eq.) in 32% NaOH (1 L) was heated to 50° C. Tert.-butyl acetoacetate (200 g, 1 eq.) was added keeping the maximum internal temperature below 55° C. The mixture was stirred for 5 h at 50° C. The stirrer was stopped and the org. layer was separated. The org. layer was washed with 1N HCl (500 mL). The org. layer was added to 32% HCl (300 mL) at an external temperature of 60° C. The mixture was stirred at 60° C. for 3.5 h and cooled to 40° C. The mixture was washed with brine (60 mL). The org. layer was washed with brine (150 mL) and dried with magnesium sulphate (8 g). The mixture was filtered and the product was purified by distillation (distillation conditions: external temperature: 70° C., head temperature: 40-55° C., pressure: 30-7 mbar) to obtain a colourless liquid; yield: 107 g (75%). Purity (GC-MS): 99.8% a/a; GC-MS: tR=1.19 min, [M+1]+=113. 1H NMR (CDCl3): δ=2.86 (m, 1H), 2.15 (s, 3H), 1.68 (m, 8H).

Example 1 b

1-Cyclopentylethanone

      Tert-butyl 1-acetylcyclopentanecarboxylate (723 g, 3.41 mol) was added to 32% HCl (870 mL) at an internal temperature of 80° C. over a period of 2 h. The mixture was stirred at 80° C. for 1 h and cooled to 50° C. The stirrer was stopped and the org. layer was separated. The org. layer was washed with water (250 mL) and dried with magnesium sulphate (24 g). The mixture was filtered and the product was purified by distillation to obtain a colourless liquid; yield: 333.6 g (87%). Purity (GC-MS): 97.3% a/a; GC-MS: tR=1.19 min, [M+1]+=113.

Example 1c

1-Cyclopentylethanone

      Tert-butyl 1-acetylcyclopentanecarboxylate (300 g, 1.41 mol) was added to 5 M HCl in isopropanol (600 mL) at an internal temperature of 60° C. over a period of 25 min. The mixture was stirred at 60° C. for 18 h and cooled to 20° C. Water (1 L) was added, the stirrer was stopped and the org. layer was separated. The org. layer was washed with water (500 mL). The crude product was purified by distillation to obtain a colourless liquid; yield: 115 g (72%). Purity (GC-MS): 87.2% a/a; GC-MS: tR=1.19 min, [M+1]+=113.

Example 1d

1-Cyclopentylethanone

      Tert-butyl 1-acetylcyclopentanecarboxylate (514 g, 2.42 mol) was added to TFA (390 mL) at an internal temperature of 60° C. More TFA (200 mL) was added and the temperature was adjusted to 65° C. The mixture was stirred at 65° C. for 1 h. The reaction mixture was concentrated at 45° C. and 20 mbar. The residue was added to TBME (500 mL), ice (200 g) and 32% NaOH (300 mL). The aq. layer was separated and extracted with TBME (500 mL). The combined org. layers were concentrated to dryness to yield the crude 1-cyclopentylethanone. The crude product was purified by distillation to yield a colorless liquid: 221.8 g (82%). Purity (GC-MS): 90.2% a/a; GC-MS: tR=1.19 min, [M+l]+=113.

Example 1e

1-Cyclopentylethanone

      Tert-butyl 1-acetylcyclopentanecarboxylate (534 g, 2.52 mol) was added to 50% H2SO4 (300 mL) at an internal temperature of 100° C. over a period of 40 min. The mixture was stirred at 120° C. for 2 h and cooled to 20° C. The stirrer was stopped and the org. layer was separated. The org. layer was washed with saturated NaHCO3 solution (250 mL). The crude product was purified by distillation to obtain a colourless liquid; yield: 177 g (63%). Purity (GC-MS): 99.9% a/a; GC-MS: tR=1.19 min, [M+1]+=113.

Example 1f

Tert-butyl 1-acetylcyclopentanecarboxylate


      To a mixture of potassium carbonate (1 kg, 7.24 mol) and tetrabutylammonium iodide (10 g, 0.027 mol) in DMSO (3 L) was added a mixture of 1,4-dibromobutane (700 g, 3.24 mol) and tert.-butyl acetoacetate (500 g, 3.16 mol). The mixture was stirred at 25° C. for 20 h. To the reaction mixture was added water (4 L) and TBME (3 L). The mixture was stirred until all solids dissolved. The TBME layer was separated and washed with water (3×1 L). The org. layer was concentrated and the crude product was purified by distillation (distillation conditions: external temperature: 135° C., head temperature: 105-115° C., pressure: 25-10 mbar) to obtain a colourless liquid; yield: 537.6 g (80%). Purity (GC-MS): 90.5% a/a; GC-MS:
      tR=1.89 min, [M+1]+=213. 1H NMR (CDCl3): δ=2.16 (s, 3H), 2.06 (m, 4H), 1.63 (m, 4H), 1.45 (s, 9H).

Example 1 g

Tert-butyl 1-acetylcyclopentanecarboxylate

      A mixture of 1,4 dibromobutane (281 g, 1 eq.) and tetrabutylammonium bromide (15 g, 0.05 eq.) in 50% NaOH (1 L) was heated to 50° C. Tert.-butyl acetoacetate (206 g, 1 eq.) was added keeping the maximum internal temperature below 55° C. The mixture was stirred for 5 h at 50° C. The stirrer was stopped and the org. layer was separated. The org. layer was washed with 1N HCl (500 mL). The crude product was purified by distillation to obtain a colourless liquid; yield: 199 g (72%). Purity (GC-MS): 97.8% a/a; GC-MS: tR=1.89 min, [M+1]+=213.

Example 2

2-Cyclopentyl-6-hydroxyisonicotinic acid


      A 10 L reactor was charged with potassium tert.-butylate (220 g, 1.1 eq.) and THF (3 L). The solution was cooled to −20° C. A mixture of diethyloxalate (260 g, 1 eq.) and 1-cyclopentylethanone (200 g, 1.78 mol, 1 eq.) was added at a temperature below −18° C. The reaction mixture was stirred at −10° C. for 30 min and then warmed to 15° C. To the mixture was added cyano acetamide (180 g, 1.2 eq.). The mixture was stirred for 20 h at 22° C. Water (600 mL) was added and the reaction mixture was concentrated at 60° C. under reduced pressure on a rotary evaporator. 3.4 L solvent were removed. The reactor was charged with 32% HCl (5 L) and heated to 50° C. The residue was added to the HCl solution at a temperature between 44 and 70° C. The mixture was heated to 100° C. for 22 h. 2.7 L solvent were removed at 135° C. external temperature and a pressure of ca. 400 mbar. The suspension was diluted with water (2.5 L) and cooled to 10° C. The suspension was filtered. The product cake was washed with water (2.5 L) and acetone (3 L). The product was dried to obtain an off white solid; yield: 255 g (69%); purity (LC-MS): 100% a/a; LC-MS: tR=0.964 min, [M+1]+=208; 1H NMR (deutero DMSO): δ=12.67 (br, 2H), 6.63 (s, 1H), 6.38 (s, 1H), 2.89 (m, 1H), 1.98 (m, 2H), 1.63 (m, 6H).

Example 3

Methyl 2-cyclopentyl-6-hydroxyisonicotinate


      2-Cyclopentyl-6-hydroxyisonicotinic acid (1520.5 g, 7.3 mol, 1 eq.), methanol (15.2 L), trimethylorthoformiate (1.56 L, 2 eq.) and sulphuric acid (471 mL, 1.2 eq.) were mixed at 20° C. and heated to reflux for 18 h. 10 L solvent were removed at 95° C. external temperature and a pressure of ca. 800 mbar.
      The mixture was cooled to 20° C. and added to water (7.6 L) at 50° C. The suspension was diluted with water (3.8 L), cooled to 10° C. and filtered. The cake was washed with water (3.8 L). The product was dried to obtain a yellowish solid; yield: 1568 g (97%); purity (LC-MS): 100% a/a; LC-MS: tR=1.158 min, [M+1]+=222; 1H NMR (deutero DMSO) δ=11.98 (br, 1H), 6.63 (m, 1H), 6.39 (s, 1H), 3.83 (s, 3H), 2.91 (m, 1H), 1.99 (m, 2H), 1.72 (m, 2H), 1.58 (m, 4H).

Example 4a

Methyl 2-chloro-6-cyclopentylisonicotinate


      Methyl 2-cyclopentyl-6-hydroxyisonicotinate (50 g, 0.226 mol, 1 eq.) and phenylphosphonic dichloride (70 mL, 2 eq.) were heated to 130° C. for 3 h. The reaction mixture was added to a solution of potassium phosphate (300 g) in water (600 mL) and isopropyl acetate (600 mL) at 0° C. The mixture was filtered over kieselguhr (i.e. diatomite, Celite™) (50 g). The aq. layer was separated and discarded. The org. layer was washed with water (500 mL). The org. layer was concentrated to dryness at 65° C. and reduced pressure to obtain a black oil; yield: 50.4 g (93%); purity (LC-MS): 94% a/a.
      The crude oil was purified by distillation at an external temperature of 130° C., head temperature of 106° C. and oil pump vacuum to yield a colourless oil; yield: 45.6 g (84%); purity (LC-MS): 100% a/a; LC-MS: tR=1.808 min, [M+1]+=240; 1H NMR (CDCl3) δ=7.69 (s, 1H), 7.67 (s, 1H), 3.97 (s, 3H), 3.23 (m, 1H), 2.12 (m, 2H), 1.80 (m, 6H).

Example 4b

Methyl 2-chloro-6-cyclopentylisonicotinate

      2-Cyclopentyl-6-hydroxyisonicotinic acid (147 g, 0.709 mol, 1 eq.) and phosphorous oxychloride (647 mL, 10 eq.) were heated to 115° C. for 4 h. The mixture was concentrated at normal pressure and an external temperature of 130-150° C. At 20° C. DCM (250 mL) was added. The solution was added to MeOH (1000 mL) below 60° C. The mixture was concentrated under reduced pressure at 50° C. DCM (1 L) was added to the residue and the mixture was washed with water (2×500 mL). The org. layer was concentrated to dryness under reduced pressure at 50° C. to obtain a black oil; yield: 181.7 g (107%); purity (LC-MS): 97% a/a. The product was contaminated with trimethyl phosphate.

Example 5

2-Cyclopentyl-6-methoxyisonicotinic acid


      Methyl 2-chloro-6-cyclopentylisonicotinate (40 g, 0.168 mol, 1 eq.) and 5.4 M NaOMe in MeOH (320 mL, 10 eq.) were heated to reflux for 16 h. Water (250 mL) was added carefully at 80° C. external temperature. Methanol was distilled off at 60° C. and reduced pressure (300 mbar). The residue was acidified with 32% HCl (150 mL) and the pH was adjusted to 1. The mixture was extracted with isopropyl acetate (300 mL). The aq. layer was discarded. The org. layer was washed with water (200 mL). The org. solution was concentrated to dryness under reduced pressure at 60° C. to obtain a white solid; yield: 35.25 g (95%). The crude product was crystallized from acetonitrile (170 mL) to obtain a white solid; 31 g (84%); purity (LC-MS): 97.5% a/a.
      LC-MS: tR=1.516 min, [M+1]+=222; 1H NMR (deutero DMSO) δ=13.50 (br s, 1H), 7.25 (s, 1H), 6.98 (s, 1H), 3.88 (s, 3H), 3.18 (m, 1H), 2.01 (m, 2H), 1.72 (m, 6H).

Example 6

Ethyl 4-cyclopentyl-2,4-dioxobutanoate


      A solution of 20% potassium tert-butoxide in THF (595 mL, 1.1 eq.) and THF (400 mL) was cooled to −20° C. A mixture of diethyloxalate (130 g, 1 eq.) and 1-cyclopentylethanone (100 g, 0.891 mol, 1 eq.) was added at a temperature below −18° C. The reaction mixture was stirred at −10° C. for 30 min and then warmed to 15° C. To the mixture was added 2 M HCl (1 L) and TBME (1 L). The org. layer was separated and washed with water (1 L). The org. layer was evaporated to dryness on a rotary evaporator to obtain an oil; yield: 171 g (91%); purity (GC-MS): 97% a/a; GC-MS: tR=2.50 min, [M+1]+=213;1H NMR δ: 14.55 (m, 1H), 6.41 (s, 1H), 4.37 (q, J=7.1 Hz, 2H), 2.91 (m, 1H), 1.79 (m, 8H), 1.40 (t, J=7.1 Hz, 3H).

Example 7

Ethyl 3-cyano-6-cyclopentyl-2-hydroxyisonicotinate


      Triethylamine (112 mL, 1 eq.) and cyanoacetamide (67.9 g, 1 eq.) was heated in ethanol to 65° C. Ethyl 4-cyclopentyl-2,4-dioxobutanoate (171 g, 0.807 mol, 1 eq.) was added to the mixture at 65° C. The mixture was stirred for 3 h at 65° C. The mixture was cooled to 20° C. and filtered. The product was washed with TBME (2×200 mL).
      The product was dried to obtain a yellow solid; yield: 85 g (40%); purity (LC-MS): 97% a/a; LC-MS: tR=1.41 min, [M+1]+=261; 1H NMR (CDCl3) δ: 12.94 (m, 1H), 6.70 (s, 1H), 4.50 (q, J=7.1 Hz, 2H), 3.11 (m, 1H), 2.21 (m, 2H), 1.96 (m, 2H), 1.78 (m, 4H), 1.48 (t, 3H).

REFERENTIAL EXAMPLES


      Original process described by Goldsworthy in J. Chem. Soc. 1934, 377-378.
      According to Goldsworthy the ketonic ester (ethyl 1-acetylcyclopentanecarboxylate) (19.5 g) was refluxed for 24 h with a considerable excess of potash (19 g) in alcohol (150 cc), two-thirds of the alcohol then distilled off, the residue refluxed for 3 h, the bulk of the alcohol finally removed, saturated brine added, and the ketone extracted with ether. The oil obtained from the extract distilled at 150-160°/760 mm and yielded nearly 4 g of a colourless oil, b.p. 153-155°/760 mm, on redistillation. The semicarbazone, prepared from the ketone and a slight excess of equivalent amounts of semicarbazide and sodium acetate in saturated solution, alcohol just sufficient to clear the solution being finally added, rapidly separated; m.p. 145° after recrystallisation from acetone (Found: N, 24.5. C8H15ON3 requires N, 24.8%).
      The process described by Goldsworthy has been reproduced using K2CO3 in the absence (Referential Example 1) and presence (Referential Example 2) of water.

Referential Example 1

      Ethyl 1-acetylcyclopentanecarboxylate (19.5 g, 0.106 mol) was refluxed for 24 h with K2CO3 (19 g, 0.137 mol, Aldrich: 347825) in ethanol (150 mL). GC-MS indicated a conversion to 3% of the desired product. The solvent was removed and the residue was extracted with ether and brine. Evaporation of solvent yielded 28.5 g of a yellow oil. GC-MS indicated ca. 86% a/a starting material, 3% a/a product.

Referential Example 2

      Ethyl 1-acetylcyclopentanecarboxylate (19.5 g, 0.106 mol) was refluxed for 24 h with K2CO3 (19 g, 0.137 mol, Aldrich: 347825) in ethanol (150 mL) in the presence of water (1.91 g, 1 eq.). GC-MS indicated a conversion to 17% of the desired product. The reaction mixture was discarded.

PATENT

US8658675

https://www.google.com/patents/US8658675

Martin Bolli, Cyrille Lescop, Boris Mathys,Keith Morrison, Claus Mueller, Oliver Nayler,Beat Steiner,

novel compounds of Formula (I) that are agonists for the G protein-coupled receptor S1P1/EDG1 and have a powerful and long-lasting immunomodulating effect which is achieved by reducing the number of circulating and infiltrating T- and B-lymphocytes, without affecting their maturation, memory, or expansion. The reduction of circulating T-/B-lymphocytes as a result of S1P1/EDG1 agonism, possibly in combination with the observed improvement of endothelial cell layer function associated with S1P1/EDG1 activation, makes such compounds useful to treat uncontrolled inflammatory diseases and to improve vascular functionality. Prior art document WO 2008/029371 discloses compounds that act as S1P1/EDG1 receptor agonists and show an immunomodulating effect as described above. Unexpectedly, it has been found that the compounds of the present invention have a reduced potential to constrict airway tissue/vessels when compared to compounds of the prior art document WO 2008/029371. The compounds of the present invention therefore demonstrate superiority with respect to their safety profile, e.g. a lower risk of bronchoconstriction.

Examples of WO 2008/029371, which are considered closest prior art analogues are shown in FIG. 1.

Figure US08658675-20140225-C00002
Figure US08658675-20140225-C00003

The data on the constriction of rat trachea rings compiled in Table 1 illustrate the superiority of the compounds of the present invention as compared to compounds of prior art document WO 2008/029371.

For instance, the compounds of Example 1 and 6 of the present invention show a significantly reduced potential to constrict rat trachea rings when compared to the compounds of prior art Examples 222 and 226 of WO 2008/029371, respectively. Furthermore, the compounds of Example 1 and 6 of the present invention also show a reduced potential to constrict rat trachea rings when compared to the compounds of prior art Examples 196 and 204 of WO 2008/029371, respectively. These data demonstrate that compounds wherein R1 represents 3-pentyl and R2represents methoxy are superior compared to the closest prior art compounds of WO 2008/029371, i.e. the compounds wherein R1 represents an isobutyl and R2represents methoxy or wherein R1 represents methyl and R2 represents 3-pentyl. Moreover, also the compound of Example 16 of the present invention, wherein R1is 3-methyl-but-1-yl and R2 is methoxy, exhibits a markedly reduced potential to constrict rat trachea rings when compared to its closest analogue prior art Example 226 of WO 2008/029371 wherein R1 is isobutyl and R2 is methoxy.

The unexpected superiority of the compounds of the present invention is also evident from the observation that the compounds of Example 2 and 7 of the present invention show a markedly reduced potential to constrict rat trachea rings when compared to the compounds of prior art Examples 229 and 233 of WO 2008/029371, respectively. This proves that compounds wherein R1 represents cyclopentyl and R2 represents methoxy are superior compared to the closest prior art compounds of WO 2008/029371, i.e. the compounds wherein R1represents methyl and R2 represents cyclopentyl.

Preparation of Intermediates2-Chloro-6-methyl-isonicotinic acid

The title compound and its ethyl ester are commercially available.

2-(1-Ethyl-propyl)-6-methoxy-isonicotinic acid

a) To a solution of 2,6-dichloroisonicotinic acid (200 g, 1.04 mol) in methanol (3 L), 32% aq. NaOH (770 mL) is added. The stirred mixture becomes warm (34° C.) and is then heated to 70° C. for 4 h before it is cooled to rt. The mixture is neutralised by adding 32% aq. HCl (100 mL) and 25% aq. HCl (700 mL). The mixture is stirred at rt overnight. The white precipitate that forms is collected, washed with methanol and dried. The filtrate is evaporated and the residue is suspended in water (200 mL). The resulting mixture is heated to 60° C. Solid material is collected, washed with water and dried. The combined crops give 2-chloro-6-methoxy-isonicotinic acid (183 g) as a white solid; LC-MS: tR=0.80 min, [M+1]+=187.93.

b) To a suspension of 2-chloro-6-methoxy-isonicotinic acid (244 g, 1.30 mol) in methanol (2.5 L), H2SO4 (20 mL) is added. The mixture is stirred at reflux for 24 h before it is cooled to 0° C. The solid material is collected, washed with methanol (200 mL) and water (500 mL) and dried under HV to give 2-chloro-6-methoxy-isonicotinic acid methyl ester (165 g) as a white solid; LC-MS: tR=0.94 min, [M+1]+=201.89.

c) Under argon, Pd(dppf) (3.04 g, 4 mmol) is added to a solution of 2-chloro-6-methoxy-isonicotinic acid methyl ester (50 g, 0.248 mol) in THF (100 mL). A 0.5 M solution of 3-pentylzincbromide in THF (550 mL) is added via dropping funnel. Upon complete addition, the mixture is heated to 85° C. for 18 h before it is cooled to rt. Water (5 mL) is added and the mixture is concentrated. The crude product is purified by filtration over silica gel (350 g) using heptane:EA 7:3 to give 2-(1-ethyl-propyl)-6-methoxy-isonicotinic acid methyl ester (53 g) as a pale yellow oil; 1H NMR (CDCl3): δ0.79 (t, J=7.5 Hz, 6H), 1.63-1.81 (m, 4H), 2.47-2.56 (m, 1H), 3.94 (s, 3H), 3.96 (s, 3H), 7.12 (d, J=1.0 Hz, 1H), 7.23 (d, J=1.0 Hz, 1H).

d) A solution of 2-(1-ethyl-propyl)-6-methoxy-isonicotinic acid methyl ester (50 g, 0.211 mol) in ethanol (250 mL), water (50 mL) and 32% aq. NaOH (50 mL) is stirred at 80° C. for 1 h. The mixture is concentrated and the residue is dissolved in water (200 mL) and extracted with TBME. The org. phase is separated and washed once with water (200 mL). The TBME phase is discarded. The combined aq. phases are acidified by adding 25% aq. HCl and then extracted with EA (400+200 mL). The combined org. extracts are concentrated. Water (550 mL) is added to the remaining residue. The mixture is heated to 70° C., cooled to rt and the precipitate that forms is collected and dried to give the title compound (40.2 g) as a white solid; LC-MS: tR=0.95 min, [M+1]+=224.04; 1H NMR (D6-DMSO): δ 0.73 (t, J=7.3 Hz, 6H), 1.59-1.72 (m, 4H), 2.52-2.58 (m, 1H), 3.88 (s, 3H), 7.00 (d, J=1.0 Hz, 1H), 7.20 (d, J=1.0 Hz, 1H).

2-Methoxy-6-(3-methyl-butyl)-isonicotinic acid

The title compound is prepared in analogy to 2-(1-ethyl-propyl)-6-methoxy-isonicotinic acid; LC-MS: tR=0.94 min, [M+1]+=224.05; 1H NMR (D6-DMSO): δ 0.92 (d, J=5.8 Hz, 6H), 1.54-1.62 (m, 3H), 2.70-2.76 (m, 2H), 3.88 (s, 3H), 6.99 (s, 1H), 7.25 (s, 1H), 13.52 (s).

2-Cyclopentyl-6-methoxy-isonicotinic acid

The title compound is prepared in analogy to 2-(1-ethyl-propyl)-6-methoxy-isonicotinic acid; LC-MS: tR=0.93 min, [M+1]+=222.02; 1H NMR (CDCl3): δ 1.68-1.77 (m, 2H), 1.81-1.90 (m, 4H), 2.03-2.12 (m, 2H), 3.15-3.25 (m, 1H), 3.99 (s, 3H), 7.18 (d, J=1.0 Hz, 1H), 7.35 (d, J=0.8 Hz, 1H).

2-Cyclohexyl-6-methoxy-isonicotinic acid

The title compound is prepared in analogy to 2-(1-ethyl-propyl)-6-methoxy-isonicotinic acid; LC-MS: tR=0.98 min, [M+1]+=236.01; 1H NMR (D6-DMSO): δ 1.17-1.29 (m, 1H), 1.31-1.43 (m, 2H), 1.44-1.55 (m, 2H), 1.67-1.73 (m, 1H), 1.76-1.83 (m, 2H), 1.84-1.92 (m, 2H), 2.66 (tt, J=11.3, 3.3 Hz, 1H), 3.88 (s, 3H), 7.00 (d, J=1.0 Hz, 1H), 7.23 (d, J=1.0 Hz, 1H).

2-Cyclopentyl-N-hydroxy-6-methoxy-isonicotinamidine

a) A solution of 2-cyclopentyl-6-methoxy-isonicotinic acid methyl ester (3.19 g, 13.6 mmol) in 7 N NH3 in methanol (50 mL) is stirred at 60° C. for 18 h. The solvent is removed in vacuo and the residue is dried under HV to give crude 2-cyclopentyl-6-methoxy-isonicotinamide (3.35 g) as a pale yellow solid; LC-MS**: tR=0.57 min, [M+1]+=221.38.

b) Pyridine (8.86 g, 91.3 mmol) is added to a solution of 2-cyclopentyl-6-methoxy-isonicotinamide (3.35 g, 15.2 mmol) in DCM (100 mL). The mixture is cooled to 0° C. before trifluoroacetic acid anhydride (9.58 g, 45.6 mmol) is added portionwise. The mixture is stirred at 0° C. for 1 h before it is diluted with DCM (100 mL) and washed with sat. aq. NaHCO3 solution (100 mL) and brine (100 mL). The separated org. phase is dried over MgSO4, filtered and concentrated. The crude product is purified by CC on silica gel eluting with heptane:EA 9:1 to give 2-cyclopentyl-6-methoxy-isonicotinonitrile (2.09 g) as pale yellow oil; LC-MS**: tR=0.80 min, [M+1]+=not detectable; 1H NMR (D6-DMSO): δ 1.61-1.82 (m, 6H), 1.94-2.03 (m, 2H), 3.16 (quint, J=7.8 Hz, 1H), 3.89 (s, 3H), 7.15 (s, 1H), 7.28 (s, 1H).

c) To a solution of 2-cyclopentyl-6-methoxy-isonicotinonitrile (2.09 g, 10.3 mmol) in methanol (100 mL), hydroxylamine hydrochloride (2.15 g, 31.0 mmol) and NaHCO3 (3.04 g, 36.2 mmol) are added. The mixture is stirred at 60° C. for 18 h before it is filtered and the filtrate is concentrated. The residue is dissolved in EA (300 mL) and washed with water (30 mL). The washings are extracted back with EA (4×100 mL) and DCM (4×100 mL). The combined org. extracts are dried over MgSO4, filtered, concentrated and dried under HV to give the title compound (2.74 g) as a white solid; LC-MS**: tR=0.47 min, [M+1]+=236.24; 1H NMR (D6-DMSO): δ 1.61-1.82 (m, 6H), 1.92-2.01 (m, 2H), 3.04-3.13 (m, 1H), 3.84 (s, 3H), 5.90 (s, 2H), 6.86 (s, 1H), 7.13 (s, 1H), 9.91 (s, 1H).

2-Cyclopentyl-6-methoxy-isonicotinic acid hydrazide

a) To a solution of 2-cyclopentyl-6-methoxy-isonicotinic acid (2.00 g, 9.04 mmol), hydrazinecarboxylic acid benzyl ester (1.50 g, 9.04 mmol) and DIPEA (2.34 g, 18.1 mmol) in DCM (40 mL), TBTU (3.19 g, 9.94 mmol) is added. The mixture is stirred at rt for 2 h before it is diluted with EA (250 mL), washed twice with sat. aq. NaHCO3 solution (150 mL) followed by brine (100 mL), dried over MgSO4, filtered and concentrated. The crude product is purified by CC on silica gel eluting with heptane:EA 4:1 to give N′-(2-cyclopentyl-6-methoxy-pyridine-4-carbonyl)-hydrazinecarboxylic acid benzyl ester (2.74 g) as pale yellow oil; LC-MS**: tR=0.74 min, [M+1]+=369.69; 1H NMR (D6-DMSO): δ 1.62-1.83 (m, 6H), 1.95-2.05 (m, 2H), 3.10-3.21 (m, 1H), 3.88 (s, 3H), 5.13 (s, 2H), 6.97 (s, 1H), 7.23 (s, 1H), 7.28-7.40 (m, 5H), 9.45 (s, 1H), 10.52 (s, 1H).

b) Pd/C (500 mg, 10% Pd) is added to a solution of N′-(2-cyclopentyl-6-methoxy-pyridine-4-carbonyl)-hydrazinecarboxylic acid benzyl ester (2.74 g, 7.42 mmol) in THF (50 mL) and methanol (50 mL). The mixture is stirred at rt under 1 bar of H2 for 25 h. The catalyst is removed by filtration and the filtrate is concentrated and dried under HV to give the title compound (1.58 g) as an off-white solid; LC-MS**: tR=0.51 min, [M+1]+=236.20; 1H NMR (D6-DMSO): δ 1.60-1.82 (m, 6H), 1.94-2.03 (m, 2H), 3.08-3.19 (m, 1H), 3.86 (s, 3H), 4.56 (s br, 2H), 6.93 (d, J=1.0 Hz, 1H), 7.20 (d, J=1.0 Hz, 1H), 9.94 (s, 1H).

3-Ethyl-4-hydroxy-5-methyl-benzonitrile

The title compound is prepared from 3-ethyl-4-hydroxy-5-methyl-benzaldehyde following literature procedures (A. K. Chakraborti, G. Kaur, Tetrahedron 55 (1999) 13265-13268); LC-MS: tR=0.90 min; 1H NMR (CDCl3): δ1.24 (t, J=7.6 Hz, 3H), 2.26 (s, 3H), 2.63 (q, J=7.6 Hz, 2H), 5.19 (s, 1H), 7.30 (s, 2H).

3-Chloro-4-hydroxy-5-methyl-benzonitrile

The title compound is prepared from commercially available 2-chloro-6-methyl-phenol in analogy to literature procedures (see 3-ethyl-4-hydroxy-5-methyl-benzonitrile); LC-MS: tR=0.85 min. 1H NMR (CDCl3): δ2.33 (s, 3H), 6.10 (s, 1H), 7.38 (s, 1H), 7.53 (d, J=1.8 Hz, 1H).

3-Ethyl-4,N-dihydroxy-5-methyl-benzamidine

The title compound is prepared from 3-ethyl-4-hydroxy-5-methyl-benzonitrile or from commercially available 2-ethyl-6-methyl-phenol following literature procedures (G. Trapani, A. Latrofa, M. Franco, C. Altomare, E. Sanna, M. Usala, G. Biggio, G. Liso, J. Med. Chem. 41 (1998) 1846-1854; A. K. Chakraborti, G. Kaur, Tetrahedron 55 (1999) 13265-13268; E. Meyer, A. C. Joussef, H. Gallardo, Synthesis 2003, 899-905); LC-MS: tR=0.55 min; 1H NMR (D6-DMSO): δ 9.25 (s br, 1H), 7.21 (s, 2H), 5.56 (s, 2H), 2.55 (q, J=7.6 Hz, 2H), 2.15 (s, 3H), 1.10 (t, J=7.6 Hz, 3H).

3-Chloro-4,N-dihydroxy-5-methyl-benzamidine

The title compound is prepared from commercially available 2-chloro-6-methyl-phenol in analogy to literature procedures (e.g. B. Roth et al. J. Med. Chem. 31 (1988) 122-129; and literature cited for 3-ethyl-4,N-dihydroxy-5-methyl-benzamidine); 3-chloro-4-hydroxy-5-methyl-benzaldehyde: LC-MS: tR=0.49 min, [M+1]+=201.00; 1H NMR 82.24 (s, 2H), 2.35 (s, 4H), 5.98 (s br, 1H), 7.59 (d, J=1.8 Hz, 1H), 7.73 (d, J=1.8 Hz, 1H), 9.80 (s, 1H); 3-chloro-4,N-dihydroxy-5-methyl-benzamidine: 1H NMR (D6-DMSO): δ 2.21 (s, 3H), 5.72 (s br, 2H), 7.40 (s, 1H), 7.48 (s, 1H), 9.29 (s br, 1H), 9.48 (s br, 1H).

(R)-4-(2,2-Dimethyl-[1,3]dioxolan-4-ylmethoxy)-3-ethyl-N-hydroxy-5-methyl-benzamidine

a) To a solution of 3-ethyl-4-hydroxy-5-methyl-benzonitrile (2.89 g, 17.9 mmol) in THF (80 mL), (R)-(2,2-dimethyl-[1,3]dioxolan-4-yl)methanol (2.84 g, 21.5 mmol) followed by triphenylphosphine (5.81 g, 21.5 mmol) is added. The mixture is cooled with an ice-bath before DEAD (9.36 g, 21.5 mmol) is added dropwise. The mixture is stirred at rt for 1 h, the solvent is removed in vacuo and the residue is purified by CC on silica gel eluting with heptane:EA 85:15 to give (R)-4-(2,2-dimethyl-[1,3]dioxolan-4-ylmethoxy)-3-ethyl-5-methyl-benzonitrile (4.45 g) as a pale yellow oil; LC-MS**: tR=0.75 min, [M+1]+=not detected; 1H NMR (CDCl3): δ1.25 (t, J=7.5 Hz, 3H), 1.44 (s, 3H), 1.49 (s, 3H), 2.34 (s, 3H), 2.65-2.77 (m, 2H), 3.80-3.90 (m, 2H), 3.94-4.00 (m, 1H), 4.21 (t, J=7.3 Hz, 1H), 4.52 (quint, J=5.8 Hz, 1H), 7.35 (s, 1H), 7.38 (s, 1H).

b) To a mixture of (R)-4-(2,2-dimethyl-[1,3]dioxolan-4-ylmethoxy)-3-ethyl-5-methyl-benzonitrile (4.45 g, 16.2 mmol) and NaHCO3 (4.75 g, 56.6 mmol) in methanol (30 mL), hydroxylamine hydrochloride (3.37 g, 48.5 mmol) is added. The mixture is stirred at 60° C. for 18 h before it is filtered and the solvent of the filtrate is removed in vacuo. The residue is dissolved in EA and washed with a small amount of water and brine. The org. phase is separated, dried over MgSO4, filtered, concentrated and dried to give the title compound (5.38 g) as a white solid; LC-MS**: tR=0.46 min, [M+1]+=309.23; 1H NMR (D6-DMSO): δ 1.17 (t, J=7.5 Hz, 3H), 1.33 (s, 3H), 1.38 (s, 3H), 2.25 (s, 3H), 2.57-2.69 (m, 2H), 3.73-3.84 (m, 3H), 4.12 (t, J=7.0 Hz, 1H), 4.39-4.45 (m, 1H), 5.76 (s br, 2H), 7.34 (s, 1H), 7.36 (s, 1H), 9.47 (s, 1H).

(R)-3-Chloro-4-(2,2-dimethyl-[1,3]dioxolan-4-ylmethoxy)-N-hydroxy-5-methyl-benzamidine

The title compound is obtained as a colorless oil (1.39 g) in analogy to (R)-4-(2,2-dimethyl-[1,3]dioxolan-4-ylmethoxy)-3-ethyl-N-hydroxy-5-methyl-benzamidine starting from 3-chloro-4-hydroxy-5-methyl-benzonitrile and L-α,β-isopropyliden glycerol; LC-MS: tR=0.66 min, [M+H]+=314.96.

(S)-4-(3-Amino-2-hydroxypropoxy)-3-ethyl-5-methylbenzonitrile

a) To a solution of 3-ethyl-4-hydroxy-5-methyl-benzonitrile (5.06 g, 31.4 mmol) in THF (80 mL), PPh3 (9.06 g, 34.5 mmol) and (R)-glycidol (2.29 mL, 34.5 mmol) are added. The mixture is cooled to 0° C. before DEAD in toluene (15.8 mL, 34.5 mmol) is added. The mixture is stirred for 18 h while warming up to rt. The solvent is evaporated and the crude product is purified by CC on silica gel eluting with heptane:EA 7:3 to give 3-ethyl-5-methyl-4-oxiranylmethoxy-benzonitrile (5.85 g) as a yellow oil; LC-MS: tR=0.96 min; [M+42]+=259.08.

b) The above epoxide is dissolved in 7 N NH3 in methanol (250 mL) and the solution is stirred at 65° C. for 18 h. The solvent is evaporated to give crude (S)-4-(3-amino-2-hydroxypropoxy)-3-ethyl-5-methylbenzonitrile (6.23 g) as a yellow oil; LC-MS: tR=0.66 min; [M+1]+=235.11.

N—((S)-3-[2-Ethyl-4-(N-hydroxycarbamimidoyl)-6-methyl-phenoxy]-2-hydroxy-propyl)-2-hydroxy-acetamide

a) To a solution of (S)-4-(3-amino-2-hydroxypropoxy)-3-ethyl-5-methylbenzonitrile (6.23 g, 26.59 mmol) in THF (150 mL), glycolic acid (2.43 g, 31.9 mmol), HOBt (4.31 g, 31.9 mmol), and EDC hydrochloride (6.12 g, 31.9 mmol) are added. The mixture is stirred at rt for 18 h before it is diluted with sat. aq. NaHCO3 and extracted twice with EA. The combined org. extracts are dried over MgSO4, filtered and concentrated. The crude product is purified by CC with DCM containing 8% of methanol to give (S)—N-[3-(4-cyano-2-ethyl-6-methyl-phenoxy)-2-hydroxy-propyl]-2-hydroxy-acetamide (7.03 g) as a yellow oil; LC-MS: tR=0.74 min, [M+1]+=293.10; 1H NMR (CDCl3): δ 1.25 (t, J=7.5 Hz, 3H), 2.32 (s, 3H), 2.69 (q, J=7.5 Hz, 2H), 3.48-3.56 (m, 3H), 3.70-3.90 (m, 3H), 4.19 (s, br, 3H), 7.06 (m, 1H), 7.36 (s, 1H), 7.38 (s, 1H).

b) The above nitrile is converted to the N-hydroxy-benzamidine according to literature procedures (e.g. E. Meyer, A. C. Joussef, H. Gallardo, Synthesis 2003, 899-905); LC-MS: tR=0.51 min, [M+1]+=326.13; 1H NMR (D6-DMSO): δ 1.17 (t, J=7.4 Hz, 3H), 2.24 (s, 3H), 2.62 (q, J=7.4 Hz, 2H), 3.23 (m, 1H), 3.43 (m, 1H), 3.67 (m, 2H), 3.83 (s, 2H), 3.93 (m, 1H), 5.27 (s br, 1H), 5.58 (s br, 1H), 5.70 (s, 2H), 7.34 (s, 1H), 7.36 (s, 1H), 7.67 (m, 1H), 9.46 (s br, 1H).

(S)—N-(3-[2-Chloro-4-(N-hydroxycarbamimidoyl)-6-methyl-phenoxy]-2-hydroxy-propyl)-2-hydroxy-acetamide

The title compound is obtained as a beige wax (1.1 g) in analogy to N—((S)-3-[2-ethyl-4-(N-hydroxycarbamimidoyl)-6-methyl-phenoxy]-2-hydroxy-propyl)-2-hydroxy-acetamide starting from 3-chloro-4-hydroxy-5-methyl-benzonitrile; LC-MS: tR=0.48 min, [M+H]+=331.94.

3-Chloro-N-hydroxy-4-methanesulfonylamino-5-methyl-benzamidine

a) A mixture of 4-amino-3-chloro-5-methylbenzonitrile (155 mg, 930 μmol) and methanesulfonylchloride (2.13 g, 18.6 mmol, 1.44 mL) is heated under microwave conditions to 150° C. for 7 h. The mixture is cooled to rt, diluted with water and extracted with EA. The org. extract is dried over MgSO4, filtered and concentrated. The crude product is purified on prep. TLC using heptane:EA 1:1 to give N-(2-chloro-4-cyano-6-methyl-phenyl)-methanesulfonamide (105 mg) as an orange solid; LC-MS**: tR=0.48 min; 1H NMR (CDCl3): δ2.59 (s, 3H), 3.18 (s, 3H), 6.27 (s, 1H), 7.55 (d, J=1.3 Hz, 1H), 7.65 (d, J=1.5 Hz, 1H).

b) Hydroxylamine hydrochloride (60 mg, 858 μmol) and NaHCO3 (72 mg, 858 μmol) is added to a solution of N-(2-chloro-4-cyano-6-methyl-phenyl)-methanesulfonamide (105 mg, 429 μmol) in methanol (10 mL). The mixture is stirred at 65° C. for 18 h. The solvent is removed in vacuo and the residue is dissolved in a small volume of water (2 mL) and extracted three times with EA (15 mL). The combined org. extracts are dried over MgSO4, filtered, concentrated and dried to give the title compound (118 mg) as a white solid; LC-MS**: tR=0.19 min, [M+1]+=277.94; 1H NMR (CDCl3): δ2.57 (s, 3H), 3.13 (s, 3H), 6.21 (s, 1H), 7.49 (d, J=1.5 Hz, 1H), 7.63 (d, J=1.5 Hz).

3-Ethyl-N-hydroxy-4-methanesulfonylamino-5-methyl-benzamidine

a) In a 2.5 L three-necked round-bottom flask 2-ethyl-6-methyl aniline (250 g, 1.85 mol) is dissolved in DCM (900 mL) and cooled to 5-10° C. Bromine (310.3 g, 1.94 mol) is added over a period of 105 min such as to keep the temperature at 5-15° C. An aq. 32% NaOH solution (275 mL) is added over a period of 10 min to the greenish-grey suspension while keeping the temperature of the reaction mixture below 25° C. DCM (70 mL) and water (100 mL) are added and the phases are separated. The aq. phase is extracted with DCM (250 mL). The combined org. phases are washed with water (300 mL) and concentrated at 50° C. to afford the 4-bromo-2-ethyl-6-methyl-aniline (389 g) as a brown oil; 1H NMR (CDCl3): δ 1.27 (t, J=7.3 Hz, 3H), 2.18 (s, 3H), 2.51 (q, J=7.3 Hz, 2H), 3.61 (s br, 1H), 7.09 (s, 2H).

b) A double-jacketed 4 L-flask is charged with 4-bromo-2-ethyl-6-methyl-aniline (324 g, 1.51 mol), sodium cyanide (100.3 g, 1.97 mol), potassium iodide (50.2 g, 0.302 mol) and copper(I)iodide (28.7 g, 0.151 mol). The flask is evacuated three times and refilled with nitrogen. A solution of N,N′-dimethylethylenediamine (191.5 mL, 1.51 mol) in toluene (750 mL) is added. The mixture is heated to 118° C. and stirred at this temperature for 21 h. The mixture is cooled to 93° C. and water (1250 mL) is added to obtain a solution. Ethyl acetate (1250 mL) is added at 22-45° C. and the layers are separated. The org. phase is washed with 10% aq. citric acid (2×500 mL) and water (500 mL). The separated org. phase is evaporated to dryness to afford 4-amino-3-ethyl-5-methyl-benzonitrile (240 g) as a metallic black solid; 1H NMR (CDCl3): δ1.29 (t, J=7.5 Hz, 3H), 2.19 (s, 3H), 2.52 (q, J=7.3 Hz, 2H), 4.10 (s br, 1H), 7.25 (s, 2H).

c) The title compound is then prepared from the above 4-amino-3-ethyl-5-methyl-benzonitrile in analogy to 3-chloro-N-hydroxy-4-methanesulfonylamino-5-methyl-benzamidine; LC-MS**: tR=0.26 min, [M+1]+=272.32.

3-Chloro-4-ethanesulfonylamino N-hydroxy-5-methyl-benzamidine

The title compound is prepared in analogy to 3-chloro-N-hydroxy-4-methanesulfonylamino-5-methyl-benzamidine using ethanesulfonylchloride; LC-MS**: tR=0.27 min, [M+1]+=292.13; 1H NMR (D6-DMSO): δ 1.36 (t, J=7.5 Hz, 3H), 2.40 (s, 3H), 3.22 (q, J=7.5 Hz), 5.88 (s, 2H), 7.57 (d, J=1.5 Hz, 1H), 7.63 (d, J=1.5 Hz, 1H), 9.18 (s, 1H), 9.78 (s, 1H).

4-Benzyloxy-3-ethyl-5-methyl-benzoic acid

a) To a solution of 3-ethyl-4-hydroxy-5-methyl-benzaldehyde (34.9 g, 0.213 mol, prepared from 2-ethyl-6-methyl-phenol according to the literature cited for 3-ethyl-4,N-dihydroxy-5-methyl-benzamidine) in MeCN (350 mL), K2CO3 (58.7 g, 0.425 mol) and benzylbromide (36.4 g, 0.213 mol) are added. The mixture is stirred at 60° C. for 2 h before it is cooled to rt, diluted with water and extracted twice with EA. The org. extracts are washed with water and concentrated to give crude 4-benzyloxy-3-ethyl-5-methyl-benzaldehyde (45 g) as an orange oil. 1H NMR (CDCl3): δ1.29 (t, J=7.5 Hz, 3H), 2.40 (s, 3H), 2.77 (q, J=7.8 Hz, 2H), 4.90 (s, 2H), 7.31-7.52 (m, 5H), 7.62 (d, J=1.5 Hz, 1H), 7.66 (d, J=1.8 Hz, 1H), 9.94 (s, 1H).
b) To a mixture of 4-benzyloxy-3-ethyl-5-methyl-benzaldehyde (132 g, 0.519 mol) and 2-methyl-2-butene (364 g, 5.19 mol) in tert.-butanol (1500 mL), a solution of NaH2PO4 dihydrate (249 g, 2.08 mol) in water (1500 mL) is added. To this mixture, NaClO2 (187.8 g, 2.08 mol) is added in portions. The temperature of the reaction mixture is kept below 30° C., and evolution of gas is observed. Upon completion of the addition, the orange bi-phasic mixture is stirred well for 3 h before it is diluted with TBME (1500 mL). The org. layer is separated and washed with 20% aq. NaHS solution (1500 mL) and water (500 mL). The org. phase is then extracted three times with 0.5 N aq. NaOH (1000 mL), the aq. phase is acidified with 25% aq. HCl (500 mL) and extracted twice with TBME (1000 mL). These org. extracts are combined and evaporated to dryness to give the title compound; 1H NMR (D6-DMSO): δ 1.17 (t, J=7.5 Hz, 3H), 2.31 (s, 3H), 2.67 (q, J=7.5 Hz, 2H), 4.86 (s, 2H), 7.34-7.53 (m, 5H), 7.68 (s, 2H), 12.70 (s, 1H).

Example 1 (S)-3-(2-Ethyl-4-{5-[2-(1-ethyl-propyl)-6-methoxy-pyridin-4-yl]-[1,2,4]oxadiazol-3-yl}-6-methyl-phenoxy)-propane-1,2-diol

a) To a solution of 2-(1-ethyl-propyl)-6-methoxy-isonicotinic acid (190 mg, 732 μmol) in THF (10 mL) and DMF (2 mL), DIPEA (190 mg, 1.46 mmol) followed by TBTU (235 mg, 732 μmol) is added. The mixture is stirred at rt for 10 min before (R)-4-(2,2-dimethyl-[1,3]dioxolan-4-ylmethoxy)-3-ethyl-N-hydroxy-5-methyl-benzamidine 226 mg, 732 μmol) is added. The mixture is stirred at rt for 1 h before it is diluted with EA and washed with water. The org. phase is separated and concentrated. The remaining residue is dissolved in dioxane (10 mL) and heated to 105° C. for 18 h. The mixture is cooled to rt, concentrated and the crude product is purified on prep. TLC plates using DCM containing 10% of methanol to give 4-{3-[4-((R)-2,2-dimethyl-[1,3]dioxolan-4-ylmethoxy)-3-ethyl-5-methyl-phenyl]-[1,2,4]oxadiazol-5-yl}-2-(1-ethyl-propyl)-6-methoxy-pyridine (256 mg) as a yellow oil; LC-MS: tR=1.28 min, [M+H]+=496.23.

b) A solution of 4-{3-[4-((R)-2,2-dimethyl-[1,3]dioxolan-4-ylmethoxy)-3-ethyl-5-methyl-phenyl]-[1,2,4]oxadiazol-5-yl}-2-(1-ethyl-propyl)-6-methoxy-pyridine (250 mg, 504 μmol) in 4 M HCl in dioxane (10 mL) is stirred at rt for 90 min before it is concentrated. The crude product is purified on prep. TLC plates using DCM containing 10% of methanol to give the title compound (76 mg) as a pale brownish solid; LC-MS: tR=1.12 min, [M+H]+=456.12; 1H NMR (CDCl3): δ0.85 (t, J=7.0 Hz, 6H), 1.33 (t, J=7.0 Hz, 3H), 1.70-1.89 (m, 4H), 2.42 (s, 3H), 2.61-2.71 (m, 1H), 2.78 (q, J=7.3 Hz, 2H), 3.82-4.00 (m, 4H), 4.04 (s, 3H), 4.14-4.21 (m, 1H), 7.34 (s, 1H), 7.46 (s, 1H), 7.86-7.91 (m, 2H).

Example 2 (S)-3-{4-[5-(2-Cyclopentyl-6-methoxy-pyridin-4-yl)-[1,2,4]oxadiazol-3-yl]-2-ethyl-6-methyl-phenoxy}-propane-1,2-diol

The title compound is prepared in analogy to Example 1 starting from 2-cyclopentyl-6-methoxy-isonicotinic acid; LC-MS: tR=1.14 min, [M+H]+=454.16; 1H NMR (CDCl3): δ1.33 (t, J=7.5 Hz, 3H), 1.72-1.78 (m, 2H), 1.85-1.94 (m, 4H), 2.03-2.15 (m, 2H), 2.41 (s, 3H), 2.72 (d, J=5.3 Hz, 1H), 2.77 (q, J=7.5 Hz, 2H), 3.19-3.28 (m, 1H), 3.81-3.94 (m, 2 H), 3.95-3.98 (m, 2H), 4.02 (s, 3H), 4.14-4.21 (m, 1H), 7.31 (d, J=1.3 Hz, 1H), 7.51 (d, J=1.0 Hz, 1H), 7.88 (d, J=1.8 Hz), 7.89 (d, J=2.0 Hz, 1H).

PAPER

Abstract Image

A practical synthesis of S1P receptor 1 agonist ACT-334441 (1) through late-stage convergent coupling of two key intermediates is described. The first intermediate is 2-cyclopentyl-6-methoxyisonicotinic acid whose skeleton was built from 1-cyclopentylethanone, ethyl oxalate, and cyanoacetate in a Guareschi–Thorpe reaction in 42% yield over five steps. The second, chiral intermediate, is a phenol ether derived from enantiomerically pure (R)-isopropylidene glycerol ((R)-solketal) and 3-ethyl-4-hydroxy-5-methylbenzonitrile in 71% yield in a one-pot reaction. The overall sequence entails 18 chemical steps with 10 isolated intermediates. All raw materials are cheap and readily available in bulk quantities, the reaction conditions match with standard pilot plant equipment, and the route reproducibly afforded 3–20 kg of 1 in excellent purity and yield for clinical studies.

Practical Synthesis of a S1P Receptor 1 Agonist via a Guareschi–Thorpe Reaction

Chemistry Process R&D, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00210
*E-mail: stefan.abele@actelion.com. Telephone: +41 61 565 67 59.
 (1H NMR): 99.40% w/w; er (HPLC method 2): (S):(R) = 99.7:0.3, tR 10.70 min (S-isomer), 14.5 min (R-isomer);
mp 80 °C (DSC);
1H NMR (d6-DMSO): δ 7.78 (s, 2 H), 7.53 (s, 1 H), 7.26 (s, 1 H), 4.98 (d, J = 4.6 Hz, 1 H), 4.65 (s, 1 H), 3.94 (s, 3 H), 3.86 (m, 2 H), 3.75 (m, 1 H), 3.50 (t, J = 5.4 Hz, 2 H), 3.28 (m, 1 H), 2.75 (d, J = 7.5 Hz, 2 H), 2.35 (s, 3 H), 2.03 (m, 2 H), 1.81 (m, 4 H), 1.69 (m, 2 H), 1.22 (t, J = 7.5 Hz, 3 H).
13C NMR (CDCl3): δ 174.3, 168.9, 165.8, 164.4, 157.4, 137.7, 133.6, 131.7, 128.4, 126.7, 122.5, 112.0, 106.0, 73.9, 71.1, 63.8, 53.7, 47.5, 33.3, 25.9, 22.9, 16.4, 14.8.
Patent ID Date Patent Title
US2015133669 2015-05-14 NEW PROCESS FOR THE PREPARATION OF 2-CYCLOPENTYL-6-METHOXY-ISONICOTINIC ACID
US8658675 2014-02-25 Pyridin-4-yl derivatives
//////////ACT-334441, ACT 334441, ACT334441, CENERIMOD, S1P receptor 1 agonist, Systemic lupus erythematosus, UNII-Y333RS1786  Y333RS1786, phase 2, Actelion Pharmaceuticals Ltd.Martin Bolli, Cyrille Lescop, Boris Mathys,Keith Morrison, Claus Mueller, Oliver Nayler,Beat Steiner,
OC[C@H](O)COC1=C(C)C=C(C2=NOC(C3=CC(C4CCCC4)=NC(OC)=C3)=N2)C=C1CC
Day 16 of the 2016 Doodle Fruit Games! Find out more at g.co/fruit
Share

RPL 554

 Uncategorized  Comments Off on RPL 554
Sep 022016
 

STR1

RPL554.png

ChemSpider 2D Image | RPL-554 | C26H31N5O4

UNII-3E3D8T1GIX.png

RPL-554

  • MF C26H31N5O4
  • MW 477.555
RPL 554, RPL554
Urea, N-[2-[(2E)-6,7-dihydro-9,10-dimethoxy-4-oxo-2-[(2,4,6-trimethylphenyl)imino]-2H-pyrimido[6,1-a]isoquinolin-3(4H)-yl]ethyl]-
(2-[(2E)-9,10-DIMETHOXY-4-OXO-2-[(2,4,6-TRIMETHYLPHENYL)IMINO]-2H,3H,4H,6H,7H-PYRIMIDO[4,3-A]ISOQUINOLIN-3-YL]ETHYL)UREA
2-[9,10-dimethoxy-4-oxo-2-(2,4,6-trimethylphenyl)imino-6,7-dihydropyrimido[6,1-a]isoquinolin-3-yl]ethylurea
{2-[(2E)-9,10-dimethoxy-4-oxo-2-[(2,4,6-trimethylphenyl)imino]-2H,3H,4H,6H,7H-pyrimido[4,3-a]isoquinolin-3-yl]ethyl}urea
2-[4-keto-9,10-dimethoxy-2-(2,4,6-trimethylphenyl)imino-6,7-dihydropyrimido[4,3-a]isoquinolin-3-yl]ethylurea
2-[9,10-dimethoxy-4-oxo-2-(2,4,6-trimethylphenyl)imino-6,7-dihydropyrimido[4,3-a]isoquinolin-3-yl]ethylurea
298680-25-8  CAS
UNII:3E3D8T1GIX

CFTR stimulator; PDE 3 inhibitor; PDE 4 inhibitor

RPL-554 is a mixed phosphodiesterase (PDE) III/IV inhibitor in phase II clinical development at Verona Pharma for the treatment of asthma, allergic rhinitis, chronic obstructive pulmonary disease (COPD) and inflammation.

RPL-554 is expected to have long duration of action and will be administered nasally thereby preventing gastrointestinal problems often resulting from orally administered PDE4 antiinflammatory drugs.

The company is now seeking licensing agreements or partnerships for the further development and commercialization of the drug.

RPL-554 (LS-193,855) is a drug candidate for respiratory diseases. It is an analog of trequinsin, and like trequinsin, is a dual inhibitor of the phosphodiesterase enzymes PDE-3 and PDE-4.[1] As of October 2015, inhaled RPL-554 delivered via a nebulizer was in development for COPD and had been studied in asthma.[2]

PDE3 inhibitors act as bronchodilators, while PDE4 inhibitors have an anti-inflammatory effect.[1][3]

RPL554 was part of a family of compounds invented by Sir David Jack, former head of R&D for GlaxoSmithKline, and Alexander Oxford, a medicinal chemist; the patents on their work were assigned to Vernalis plc.[4][5]:19-20

In 2005, Rhinopharma Ltd, acquired the rights to the intellectual property from Vernalis.[5]:19-20 Rhinopharma was a startup founded in Vancouver, Canada in 2004 by Michael Walker, Clive Page, and David Saint, to discover and develop drugs for chronic respiratory diseases,[5]:16 and intended to develop RPL-554, delivered with an inhaler, first for allergic rhinitis, then asthma, then forCOPD.[5]:16-17 RPL554 was synthesized at Tocris, a contract research organization, under the supervision of Oxford, and was studied in collaboration with Page’s lab at King’s College, London.[1] In 2006 Rhinopharma recapitalized and was renamed Verona Pharma plc.[5]

This was first seen in April 2015 when it was published as a France national. Verona Pharma (formerly Rhinopharma), under license from Kings College via Vernalis, is developing the long-acting bronchodilator, RPL-554 the lead in a series dual inhibitor of multidrug resistant protein-4 and PDE 3 and 4 inhibiting trequinsin analogs which included RPL-565, for treating inflammatory respiratory diseases, such as allergic rhinitis, asthma, and COPD.

RPL554

Verona Pharma’s lead drug, RPL554, is a “first-in-class” inhaled drug under development for chronic obstructive pulmonary disease (COPD), asthma and cystic fibrosis. The drug is an inhibitor of the phosphodiesterase 3 (PDE3) and phosphodiesterase 4 (PDE4) enzymes, two enzymes known to be of importance in the development and progression of immunological respiratory diseases. The drug has the potential to act as both a bronchodilator and an anti-inflammatory which would significantly differentiate it from existing drugs.

RPL554 was selected from a class of compounds co-invented by Sir David Jack, the former Director of Research at Glaxo who led the team that discovered many of the commercially successful drugs in the respiratory market.

Verona Pharma has successfully completed two double-blind placebo controlled randomised Phase 2b studies of RPL554: one in mild to moderate asthma and another in mild to moderate COPD. The drug was found to be well tolerated, free from drug-related adverse effects (especially cardiovascular and gastro-intestinal effects) and generated significant bronchodilation.  Additionally, double-blind placebo controlled exploratory studies in healthy volunteers challenged with an inhaled irritant also generated consistent, clinically meaningful anti-inflammatory effects.

Verona Pharma is also carrying out exploratory studies to investigate the potential of RPL554 as a novel treatement for cystic fibrosis. In November 2014, the Company received a Venture and Innovation Award from the UK Cystic Fibrosis Trust to further such studies.

For further information on the potential of RPL554 for the treatment of respiratory diseases, refer to the peer-reviewed paper available on-line in the highly-respected medication journal, The Lancet Respiratory Medicine, entitledEfficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials”.

 

The competitive advantages of RPL554 include the following:
  • combining bronchodilator (PDE 3) and anti-inflammatory actions (PDE 4) in a single drug, something that is currently only achieved with a combination LABA and glucocorticosteroid inhaler,
  • unique in not using steroids or beta agonists, which have known side effects,
  • planned to be administered by nasal inhalation, thereby reducing the unwanted gastrointestinal side effects of many orally administered drugs.
History of Clinical Trials
  • Following completion in May 2008 of toxicological studies of RPL554, the Company commenced in February 2009 a Phase I/IIa clinical trial of the drug at the Centre for Human Drug Research (CHDR) at Leiden in the Netherlands. In September 2009, the Company announced that it had successfully completed the trial, demonstrating that RPL554 has a good safety profile and has beneficial effects in terms of bronchodilation and bronchoprotection in asthmatics and a reduction in the numbers of inflammatory cells in the nasal passages of allergic rhinitis patients.
  • In November 2010, the Company successfully completed a further trial that examined the safety and bronchodilator effectiveness of the drug administered at higher doses.
  • In August 2011, the Company demonstrated that bronchodilation is maintained over a period of 6 days with daily dosing of RPL554 in asthmatics.
  • In November 2011, the Company successfully demonstrated safety and bronchodilation of RPL554 in patients with mild to moderate forms of COPD.
  • In March 2013, the Company demonstrated positive airway anti-inflammatory activity with respect to COPD at a clinical trial carried out at the Medicines Evaluation Unit (MEU) in Manchester, UK.

Synthesis

WO 2000058308

STR1

Cyclization of 1-(3,4-dimethoxyphenethyl)barbituric acid  in refluxing POCl3 produces the pyrimidoisoquinolinone , which is further condensed with 2,4,6-trimethylaniline  in boiling isopropanol to afford the trimethylphenylimino derivative . Subsequent alkylation of with N-(2-bromoethyl)phthalimide in the presence of K2CO3 and KI, followed by hydrazinolysis of the resulting phthalimidoethyl compound  yields the primary amine . This is finally converted into the title urea RPL 554 by reaction with sodium cyanate in aqueous HCl.

Example 1 : 9 Λ 0-Dimethoxy-2-(2.4-6-trimethy-phen yliminoY-3-(N-carbamoyl-2- aminoethylV3.4.6.7-tetrahydro-2H-pyrimido[6.1-a]isoquinolin-4-one

Figure imgf000029_0001

Sodium cyanate (6.0g, 0.092 mol) in water (100 ml) was added dropwise to a stirred solution of 9,10-Dimethoxy-2-(2,4,6-trimethylphenylimino)-3-(2-aminoethyl)-3,4,6,7- tetrahydro-2H-pyrimido[6,l-a]isoquinolin-4-one, prepared according to Preparation 4 above (20.0g, 0.046 mol) in water (600 ml) and IN ΗC1 (92 ml) at 80°C. After stirring for 2h at 80°C the mixture was cooled in an ice-bath and basified with 2N NaOH. The mixture was extracted with dichloromethane (3 x 200 ml) and the combined extract was dried (MgSO- ) and evaporated in vacuo. The resulting yellow foam was purified by column chromatography on silica gel eluting with CH2CI2 / MeOH (97:3) and triturated with ether to obtain the title compound as a yellow solid, 11.9g, 54%.

M.p.: 234-236°C m/z: C26H31N5O4 requires M=477 found (M+l) = 478

HPLC: Area (%) 99.50 Column ODS (150 x 4.6 mm)

MP pH3 KH2PO4 / CH3CN (60/40)

FR (ml/min) 1.0 RT (min) 9.25 Detection 250 nm

lK NMR (300 MHz, CDCI3): δ 1.92 (1H, br s, NH), 2.06 (6H, s, 2xCH3), 2.29 (3H, s, CH3), 2.92 (2H, t, CH2), 3.53 (2H, m, CH2), 3.77 (3H, s, OCH3), 3.91 (3H, s, OCH3), 4.05 (2H, t, CH2), 4.40 (2H, t, CH2), 5.35 (2H, br s, NH2), 5.45 (1H, s, C=CH), 6.68 (1H, s, ArH), 6.70 (1H, s, ArH), 6.89 (2H, s, 2xArH).

Preparation 1 : Synthesis of 2-Chloro-6.7-d-hydro-9.10-Dimethoxy-4H-pyrimido- [6,l-a]isoquinoHn-4-one (shown as (1) in Figure 1

Figure imgf000027_0001

A mixture of l-(3,4-dimethoxyphenyl) barbituric acid (70g, 0.24mol), prepared according to the method described in B. Lai et al. J.Med.Chem. 27 1470-1480 (1984), and phosphorus oxychloride (300ml, 3.22mol) was refluxed for 2.5h. The excess phosphorous oxychloride was removed by distillation (20mmHg) on wa ming. After cooling the residue was slurried in dioxan (100ml) and cautiously added to a vigorously stirred ice/water solution (11). Chloroform (11) was added and the resulting mixture was basified with 30% sodium hydroxide solution. The organic layer was separated and the aqueous phase further extracted with chloroform (2x750ml). The combined organic extracts were washed with water (1.51), dried over magnesium sulphate and concentrated in vacuo to leave a gummy material (90g). This was stirred in methanol for a few minutes, filtered and washed with methanol (200ml), diethyl ether (2x200ml) and dried in vacuo at 40°C to yield the title compound as a yellow/orange solid. 47g, 62%

(300MHz, CDCI3) 2.96(2H, t, C(7) H2); 3.96(6H, s, 2xOCH3; 4.20(2H, t, C(6) H2); 6.61(1H, s, C(1) H); 6.76(1H, s, Ar-H); 7.10(1H, s, Ar-H). Preparation 2: 9.10-Dimethoxy-2-(2.4.6-trimethylphenyliminoV3.4.6.7- tetrahydro-2H-pyrimido[6.1-a]isoquinolin-4-one (shown as (2) in Figure 1

2-Chloro-9,10-dimethoxy-6,7-dihydro-4H-pyrimido[6,l-a]isoquinolin-4-one, prepared according to Preparation 1, (38.5g, 0.13 mol) and 2,4,6-trimethylaniline (52.7g, 0.39 mol) in propan-2-ol (3 1) was stirred and heated at reflux, under nitrogen, for 24h. After cooling to room temperature, the solution was evaporated in vacuo and the residue was purified by column chromatography on silica gel, eluting with CΗ2CI2 /

MeOH, initially 98:2, changing to 96:4 once the product began to elute from the column. The title compound was obtained with a slight impurity, (just above the product on tic). Yield 34.6g, 67%.

Preparation 3: 9.10-Dimethoxy-2-(2.4.6-trimethylphenyliminoV3-(2-N- phthalimidoethyπ-3.4.6.7-tetrahydro-2H-pyrimido[6.1-a]isoquinolin-4-one

(shown as (3 in Figure 1)

A mixture of 9,10-Dimethoxy-2-(2,4,6-trimethylphenylimino)-3,4,6,7-tetrahydro-2H- pyrimido[6,l-a]isoquinolin-4-one (which was prepared according to Preparation 2) (60.0g, 0.153 mol), potassium carbonate (191g, 1.38 mol), sodium iodide (137g, 0.92 mol) and N-(2-bromoethyl)phthalimide (234g, 0.92 mol) in 2-butanone (1500 ml) was stirred and heated at reflux, under nitrogen, for 4 days. After cooling to room temperature the mixture was filtered and the filtrate was evaporated in vacuo. The residue was treated with methanol (1000 ml) and the solid filtered off, washed with methanol and recrystallised from ethyl acetate to obtain the title compound as a pale yellow solid in yield 40. Og, 46%. Evaporation of the mother liquor and column chromatography of the residue on silica gel (CΗ2C-2 / MeOH 95:5) provided further product 11.7g, 13.5%. Preparation 4: 9.10-Dimethoxy-2-(2A6-trimethylphenylimino)-3-(2-arninoethyO- 3.4.6.7-tetrahydro-2H-pyrimido[6.1-a]isoquino-in-4-one (shown as (4) in Figure 1)

A mixture of 9,10-Dimethoxy-2-(2,4,6-trimethylphenylimino)-3-(2-N- phthalimidoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,l-a]isoquinolin-4-one (22. Og, 0.039 mol), prepared according to Preparation 3, and hydrazine hydrate (11.3g, 0.195 mol) in chloroform (300 ml) and ethanol (460 ml) was stined at room temperature, under nitrogen, for 18h. Further hydrazine hydrate (2.9g, 0.05 mol) was added and the mixture was stirred a further 4h. After cooling in ice / water, the solid was removed by filtration and the filtrate evaporated in vacuo. The residue was dissolved in dichloromethane and the insoluble material was removed by filtration. The fitrate was dried (MgSO-i) and evaporated in vacuo to afford the title compound as a yellow foam in yield 16.2g, 96%.

PATENT

WO 2012020016

PATENT

WO 2016128742

Novel crystalline acid addition salts forms of RPL-554 are claimed, wherein the salts, such as ethane- 1,2-disulfonic acid, ethanesulfonic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, phosphoric acid or sulfuric acid. .

RPL554 (9, 10-dimethoxy-2-(2,4,6-trimethylphenylimino)-3-(/V-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6, l-a]isoquinolin-4-one) is a dual PDE3/PDE4 inhibitor and is described in WO 00/58308. As a combined PDE3/PDE4 inhibitor, RPL554 has both antiinflammatory and bronchodilatory activity and is useful in the treatment of respiratory disorders such as asthma and chronic obstructive pulmonary disease (COPD). The structure of RPL554 is shown below.

Owing to its applicability in the treatment of respiratory disorders, it is often preferable to administer RPL554 by inhalation. Franciosi et al. disclose a solution of RPL554 in a citrate-phosphate buffer at pH 3.2 (The Lancet: Respiratory Medicine 11/2013; l(9):714-27. DOI: 10.1016/S2213-2600(13)70187-5). The preparation of salts of RPL554 has not been described.

PATENT

http://www.google.ch/patents/WO2000058308A1?cl=en&hl=de

 

PATENT

http://www.google.ch/patents/WO2012020016A1?cl=en

U.S. Pat. No. 6,794,391, 7,378,424, and 7,105,663, which are each incorporated herein by reference, discloses compound RPL-554 (N-{2-[(2iT)-2-(mesityiimino)-9,10- dimethoxy-4-oxo-6,7-dihydro-2H-pyrimido[6,l-a]-isoquinolin-3 4H)-yl]ethyl}urea).

Figure imgf000003_0001

It would be beneficial to provide a composition of a stable polymorph of RPL-554, that has advanrtages over less stable polymorphs or amorphous forms, including

stability, compressibility, density, dissolution rates, increased potency or. lack toxicity.

 

WO2000058308A1 * Mar 29, 2000 Oct 5, 2000 Vernalis Limited DERIVATIVES OF PYRIMIDO[6,1-a]ISOQUINOLIN-4-ONE
US6794391 Sep 26, 2001 Sep 21, 2004 Vernalis Limited Derivatives of pyrimido[6.1-a]isoquinolin-4-one
US7105663 Feb 24, 2004 Sep 12, 2006 Rhinopharma Limited Derivatives of pyrimido[6,1-a]isoquinolin-4-one
US7378424 Feb 24, 2004 May 27, 2008 Verona Pharma Plc Derivatives of pyrimido[6, 1-A]isoquinolin-4-one
Patent ID Date Patent Title
US7378424 2008-05-27 Derivatives of pyrimido[6, 1-A]isoquinolin-4-one
US7105663 2006-09-12 Derivatives of pyrimido[6, 1-a]isoquinolin-4-one
US6794391 2004-09-21 Derivatives of pyrimido[6.1-a]isoquinolin-4-one
US2004001895 2004-01-01 Combination treatment for depression and anxiety
US2003235631 2003-12-25 Combination treatment for depression and anxiety
Patent ID Date Patent Title
US2015210655 2015-07-30 CERTAIN (2S)-N-[(1S)-1-CYANO-2-PHENYLETHYL]-1, 4-OXAZEPANE-2-CARBOXAMIDES AS DIPEPTIDYL PEPTIDASE 1 INHIBITORS
US2014349969 2014-11-27 COMPOUNDS AND METHODS FOR TREATING PAIN
US2014242174 2014-08-28 TREATING COUGH AND TUSSIVE ATTACKS
US2013252924 2013-09-26 Compounds and Methods for Treating Pain
US2013225616 2013-08-29 CRYSTALLINE FORM OF PYRIMIDIO[6, 1-A] ISOQUINOLIN-4-ONE COMPOUND
US2012302533 2012-11-29 DERIVATIVES OF PYRIMIDO [6, 1-A] ISOQUINOLIN-4-ONE
US8242127 2012-08-14 Derivatives of pyrimido[6, 1-A]isoquinolin-4-one
US2011201665 2011-08-18 Compositions, Methods, and Kits for Treating Influenza Viral Infections
US2011028510 2011-02-03 Compositions, Methods, and Kits for Treating Influenza Viral Infections
US2010260755 2010-10-14 IBUDILAST AND IMMUNOMODULATORS COMBINATION
WO2012020016A1 * 9. Aug. 2011 16. Febr. 2012 Verona Pharma Plc Crystalline form of pyrimidio[6,1-a]isoquinolin-4-one compound
WO2014140647A1 17. März 2014 18. Sept. 2014 Verona Pharma Plc Drug combination
WO2014140648A1 17. März 2014 18. Sept. 2014 Verona Pharma Plc Drug combination
WO2015173551A1 * 11. Mai 2015 19. Nov. 2015 Verona Pharma Plc New treatment
US8883857 8. März 2013 11. Nov. 2014 Baylor College Of Medicine Small molecule xanthine oxidase inhibitors and methods of use
US8883858 23. Juli 2014 11. Nov. 2014 Baylor College Of Medicine Small molecule xanthine oxidase inhibitors and methods of use
US8895626 23. Juli 2014 25. Nov. 2014 Baylor College Of Medicine Small molecule xanthine oxidase inhibitors and methods of use
US8987337 23. Juli 2014 24. März 2015 Baylor College Of Medicine Small molecule xanthine oxidase inhibitors and methods of use
US9061983 23. Juli 2014 23. Juni 2015 Baylor College Of Medicine Methods of inhibiting xanthine oxidase activity in a cell
US9062047 9. Aug. 2011 23. Juni 2015 Verona Pharma Plc Crystalline form of pyrimido[6,1-A] isoquinolin-4-one compound

References

  1. Boswell-Smith V et al. The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]isoquinolin-4-one]. J Pharmacol Exp Ther. 2006 Aug;318(2):840-8. PMID 16682455
  2.  Nick Paul Taylor for FierceBiotech. October 1, 2015 Verona sets sights on PhIIb after COPD drug comes through early trial
  3.  Turner MJ et al. The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. Am J Physiol Lung Cell Mol Physiol. 2016 Jan 1;310(1):L59-70. PMID 26545902
  4. Jump up^ see US20040171828, identified in the citations of PMID 16682455
  5. ISIS Resources, PLC. August 23, 2006 Proposed Acquisition of Rhinopharma

REFERENCES

1: Calzetta L, Cazzola M, Page CP, Rogliani P, Facciolo F, Matera MG. Pharmacological characterization of the interaction between the dual phosphodiesterase (PDE) 3/4 inhibitor RPL554 and glycopyrronium on human isolated bronchi and small airways. Pulm Pharmacol Ther. 2015 Jun;32:15-23. doi: 10.1016/j.pupt.2015.03.007. Epub 2015 Apr 18. PubMed PMID: 25899618.

2: Franciosi LG, Diamant Z, Banner KH, Zuiker R, Morelli N, Kamerling IM, de Kam ML, Burggraaf J, Cohen AF, Cazzola M, Calzetta L, Singh D, Spina D, Walker MJ, Page CP. Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials. Lancet Respir Med. 2013 Nov;1(9):714-27. doi: 10.1016/S2213-2600(13)70187-5. Epub 2013 Oct 25. PubMed PMID: 24429275.

3: Wedzicha JA. Dual PDE 3/4 inhibition: a novel approach to airway disease? Lancet Respir Med. 2013 Nov;1(9):669-70. doi: 10.1016/S2213-2600(13)70211-X. Epub 2013 Oct 25. PubMed PMID: 24429260.

4: Calzetta L, Page CP, Spina D, Cazzola M, Rogliani P, Facciolo F, Matera MG. Effect of the mixed phosphodiesterase 3/4 inhibitor RPL554 on human isolated bronchial smooth muscle tone. J Pharmacol Exp Ther. 2013 Sep;346(3):414-23. doi: 10.1124/jpet.113.204644. Epub 2013 Jun 13. PubMed PMID: 23766543.

5: Gross N. The COPD pipeline XX. COPD. 2013 Feb;10(1):104-6. doi: 10.3109/15412555.2013.766103. PubMed PMID: 23413896.

6: Gross NJ. The COPD Pipeline XIV. COPD. 2012 Feb;9(1):81-3. doi: 10.3109/15412555.2012.646587. PubMed PMID: 22292600.

7: Boswell-Smith V, Spina D, Oxford AW, Comer MB, Seeds EA, Page CP. The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl)-3,4,6, 7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]isoquino lin-4-one]. J Pharmacol Exp Ther. 2006 Aug;318(2):840-8. Epub 2006 May 8. PubMed PMID: 16682455.

RPL-554
RPL554.png
Systematic (IUPAC) name
N-{2-[(2E)-2-(mesitylimino)-9,10-dimethoxy-4-oxo-6,7-dihydro-2H-pyrimido[6,1-a]-isoquinolin-3(4H)-yl]ethyl}urea
Identifiers
PubChem CID 9934746
ChemSpider 8110374 Yes
Synonyms 9,10-Dimethoxy-2-(2,4,6-trimethylphenylimino)-3-(N-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one
Chemical data
Formula C26H31N5O4
Molar mass 477.554 g/mol

///////////RPL-554, LS-193,855, 298680-25-8, UNII:3E3D8T1GIX, RPL554, RPL 554, phase 2,

Cc3cc(C)cc(C)c3N=c2cc1-c(cc4OC)c(cc4OC)CCn1c(=O)n2CCNC(N)=O

Day 16 of the 2016 Doodle Fruit Games! Find out more at g.co/fruit

P V SINDHU OF INDIA WINS BADMINTON GOLD IN RIO 2016 OLYMPICS

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: