AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Boosting Broccoli Power

 Ayurveda, drugs, GENERIC  Comments Off on Boosting Broccoli Power
Nov 172013
 

 

The plant hormone methyl jasmonate can be used to increase broccoli’s antitumoral properties

Read more

http://www.chemistryviews.org/details/news/5428251/Boosting_Broccoli_Power.html

 

 

 

home business

back to home for more updates

ANTHONY MELVIN CRASTO

DR ANTHONY MELVIN CRASTO Ph.D

amcrasto@gmail.com

MOBILE-+91 9323115463
GLENMARK SCIENTIST , NAVIMUMBAI, INDIA
Share

Synthetic drug Tramadol found in nature,pin cushion tree

 Ayurveda, drugs  Comments Off on Synthetic drug Tramadol found in nature,pin cushion tree
Sep 182013
 

The bark of Nauclea latifolia contains tramadol at medicinal concentrations © imagebroker / Alamy

http://www.rsc.org/chemistryworld/2013/09/african-plant-natural-source-tramadol

In another example of nature beating chemists, the African plant Nauclea latifolia has been found to be a natural source of the synthetic opioid tramadol. First marketed in 1977, tramadol is frequently used to relive moderate to moderately-severe pain. While other synthetic drugs have later been found in nature, this is the first instance where the discovery involves clinically viable concentrations.

Colloquially known as the ‘African peach’ or ‘pin cushion tree’, N. latifolia is a flowering, sub-Saharan evergreen that grows widely across Central and West Africa and is used by local populations to treat a wide variety of ailments – including epilepsy, malaria, general pain and many infectious diseases………………………. READ ALL AT

http://www.rsc.org/chemistryworld/2013/09/african-plant-natural-source-tramadol

 

tramadol

tramadol hydrocloride

The chemical name for tramadol hydrochloride is (±)cis-2-[(dimethylamino)methyl]-1-(3methoxyphenyl) cyclohexanol hydrochloride

Tramadol (marketed as the hydrochloride salt by Janssen Pharmaceutica as Ultram in the United States, Ralivia by Biovail in Canada and many other companies throughout the world) is a centrally acting synthetic opioid analgesic used to treat moderate to moderately severe pain. The drug has a wide range of applications, including treatment of rheumatoid arthritis, restless legs syndrome, motor neurone disease and fibromyalgia.[citation needed] It was launched and marketed as Tramal by the German pharmaceutical company Grünenthal GmbH in 1977.

Tramadol is a weak μ-opioid receptor agonist, a serotonin releaser and a reuptake inhibitor of norepinephrine. Tramadol is metabolized to O-desmethyltramadol, a significantly more potent μ-opioid agonist. Tramadol and its major metabolite(s) are distinguished from other more potent opioid agonists by relative selectivity for μ-opioid receptors.

Chemistry

Characteristics

Structurally, tramadol closely resembles a stripped down version of codeine. Both codeine and tramadol share the 3-methyl ether group, and both compounds are metabolized along the same hepatic pathway and mechanism to the stronger opioid, phenol agonist analogs. For codeine, this is morphine, and for tramadol, it is the O-desmethyltramadol.

When administered through IV, patients notice very little clinical difference in subjective potency compared to morphine.

Comparison with related substances

Structurally, tapentadol is the closest chemical relative of tramadol in clinical use. Tapentadol is also an opioid, but unlike both tramadol and venlafaxine, tapentadol represents only one stereoisomer and is the weaker of the two, in terms of opioid effect. Both tramadol and venlafaxine are racemic mixtures. Structurally, tapentadol also differs from tramadol in being a phenol, and not an ether. Also, both tramadol and venlafaxine incorporate a cyclohexyl moiety, attached directly to the aromatic, while tapentadol lacks this feature.

Synthesis and stereoisomerism

(1R,2R)-Tramadol   (1S,2S)-Tramadol
(1R,2R)-Tramadol     (1S,2S)-Tramadol
(1R,2S)-Tramadol   (1S,2R)-Tramadol
(1R,2S)-Tramadol     (1S,2R)-Tramadol

The chemical synthesis of tramadol is described in the literature.[62] Tramadol [2-(dimethylaminomethyl)-1-(3-methoxyphenyl)cyclohexanol] has two stereogenic centers at the cyclohexane ring. Thus, 2-(dimethylaminomethyl)-1-(3-methoxyphenyl)cyclohexanol may exist in four different configurational forms:

  • (1R,2R)-isomer
  • (1S,2S)-isomer
  • (1R,2S)-isomer
  • (1S,2R)-isomer

The synthetic pathway leads to the racemate (1:1 mixture) of (1R,2R)-isomer and the (1S,2S)-isomer as the main products. Minor amounts of the racemic mixture of the (1R,2S)-isomer and the (1S,2R)-isomer are formed as well. The isolation of the (1R,2R)-isomer and the (1S,2S)-isomer from the diastereomeric minor racemate [(1R,2S)-isomer and (1S,2R)-isomer] is realized by the recrystallization of the hydrochlorides. The drug tramadol is a racemate of the hydrochlorides of the (1R,2R)-(+)- and the (1S,2S)-(–)-enantiomers. The resolution of the racemate [(1R,2R)-(+)-isomer / (1S,2S)-(–)-isomer] was described[63] employing (R)-(–)- or (S)-(+)-mandelic acid. This process does not find industrial application, since tramadol is used as a racemate, despite known different physiological effects[64] of the (1R,2R)- and (1S,2S)-isomers, because the racemate showed higher analgesic activity than either enantiomer in animals[65] and in humans.[66]

  1. 62…..Pharmaceutical Substances, Axel Kleemann, Jürgen Engel, Bernd Kutscher and Dieter Reichert, 4. ed. (2000) 2 volumes, Thieme-Verlag Stuttgart (Germany), p. 2085 bis 2086, ISBN 978-1-58890-031-9; since 2003 online with biannual actualizations.
  2. 63………Zynovy, Zinovy; Meckler, Harold (2000). “A Practical Procedure for the Resolution of (+)- and (−)-Tramadol”. Organic Process Research & Development 4 (4): 291–294. doi:10.1021/op000281v.
  3. 64……..Burke D, Henderson DJ (April 2002). “Chirality: a blueprint for the future”. British Journal of Anaesthesia 88 (4): 563–76. doi:10.1093/bja/88.4.563. PMID 12066734.
  4. 65…Raffa, R. B.; Friderichs, E.; Reimann, W.; Shank, R. P.; Codd, E. E.; Vaught, J. L.; Jacoby, H. I.; Selve, N. (1993). “Complementary and synergistic antinociceptive interaction between the enantiomers of tramadol”. The Journal of Pharmacology and Experimental Therapeutics 267 (1): 331–340. PMID 8229760.  
  5. 66 ..Grond, S.; Meuser, T.; Zech, D.; Hennig, U.; Lehmann, K. A. (1995). “Analgesic efficacy and safety of tramadol enantiomers in comparison with the racemate: a randomised, double-blind study with gynaecological patients using intravenous patient-controlled analgesia”. Pain 62 (3): 313–320. doi:10.1016/0304-3959(94)00274-I. PMID 8657431.  
  • tramadol hydrochloride, which is (RR, SS)-2-dimethylaminomethyl-1-(3-methoxyphenyl)cyclohexanol hydrochloride (trans), from a mixture of its (RS, SR) (cis) and trans bases, and to an improved process for the preparation of tramadol (base) monohydrate, sometimes used as an intermediate in the preparation of tramadol hydrochloride.
  • Tramadol is a well-established drug disclosed in US patent specification no. 3 652 589, which is used in the form of its hydrochloride salt as a non-narcotic analgesic drug. Tramadol is the pharmacologically active trans isomer of 2-dimethylaminomethyl-1-(3-methoxyphenyl)cyclohexanol, as opposed to the corresponding cis isomer, namely, (RS, SR)-2-dimethylaminomethyl-1-(3-methoxyphenyl)cyclohexanol.
  • Various processes for the synthesis of tramadol hydrochloride have been described in the prior art. For example, US 3 652 589 and British patent specification no. 992 399 describe the preparation of tramadol hydrochloride. In this method, Grignard reaction of 2-dimethylaminomethyl cyclohexanone (Mannich base) with metabromo-anisole gives an oily mixture of tramadol and the corresponding cis isomer, along with Grignard impurities. This oily reaction mixture is subjected to high vacuum distillation at high temperature to give both the geometric isomers of the product base as an oil. This oil, on acidification with hydrogen chloride gas, furnishes insufficiently pure tramadol hydrochloride as a solid. This must then be purified, by using a halogenated solvent and 1,4-dioxane, to give sufficiently pure tramadol hydrochloride. The main drawback of this process is the use of large quantities of 1,4-dioxane and the need for multiple crystallizations to get sufficiently pure trans isomer hydrochloride (Scheme – 1).
  • The use of dioxane for the separation of tramadol hydrochloride from the corresponding cis isomer has many disadvantages, such as safety hazards by potentially forming explosive peroxides, and it is also a category 1 carcinogen (Kirk and Othmer, 3rd edition, 17, 48). Toxicological studies of dioxane show side effects such as CNS depression, and necrosis of the liver and kidneys. Furthermore, the content of dioxane in the final tramadol hydrochloride has been strictly limited; for example, the German Drug Codex (Deutscher Arzneimittel Codex, DAC (1991)) restricts the level of dioxane in tramadol hydrochloride to 0.5 parts per million (ppm).

    Figure 00020001
  • In another process, disclosed in US patent specification no. 5 414 129, the purification and separation of tramadol hydrochloride is undertaken from a reaction mixture containing the trans and cis isomers, and Grignard reaction side products, in which the reaction mixture is diluted in isopropyl alcohol and acidified with gaseous hydrogen chloride to yield (trans) tramadol hydrochloride (97.8%) and its cis isomer (2.2%), which is itself crystallized twice with isopropyl alcohol to give pure (trans) tramadol hydrochloride (Scheme – 2). This process relies on the use of multiple solvents to separate the isomers (ie butylacetate, 1-butanol, 1-pentanol, primary amyl alcohol mixture, 1-hexanol, cyclohexanol, 1-octanol, 2-ethylhexanol and anisole). The main drawback of this process is therefore in using high boiling solvents; furthermore, the yields of tramadol hydrochloride are still relatively low and the yield of the corresponding cis hydrochloride is relatively high in most cases.

    Figure 00030001
  • PCT patent specification no. WO 99/03820 describes a method of preparation of tramadol (base) monohydrate, which involves the reaction of Mannich base with metabromo-anisole (Grignard reaction) to furnish a mixture of tramadol base with its corresponding cis isomer and Grignard impurities. This, on treatment with an equimolar quantity of water and cooling to 0 to -5°C, gives a mixture of tramadol (base) monohydrate with the corresponding cis isomer (crude). It is further purified with ethyl acetate to furnish pure (trans) tramadol (base) monohydrate, which is again treated with hydrochloric acid in the presence of a suitable solvent to give its hydrochloride salt (Scheme – 2). The drawback of this method is that, to get pure (trans) tramadol hydrochloride, first is prepared pure (trans) tramadol (base) monohydrate, involving a two-step process, and this is then converted to its hydrochloride salt. The overall yield is low because of the multiple steps and tedious process involved.
  • More recently, a process for the separation of tramadol hydrochloride from a mixture with its cis isomer, using an electrophilic reagent, has been described in US patent specification no. 5 874 620. The mixture of tramadol hydrochloride with the corresponding cis isomer is reacted with an electrophilic reagent, such as acetic anhydride, thionyl chloride or sodium azide, using an appropriate solvent (dimethylformamide or chlorobenzene) to furnish a mixture of tramadol hydrochloride (93.3 to 98.6%) with the corresponding cis isomer (1.4 to 6.66%), (Scheme – 3). The product thus obtained is further purified in isopropyl alcohol to give pure (trans) tramadol hydrochloride. However, the drawback of this process is that a mixture of tramadol base with its cis isomer is first converted into the hydrochloride salts, and this is further reacted with toxic, hazardous and expensive electrophilic reagents to get semi-pure (trans) tramadol hydrochloride. The content of the cis isomer is sufficiently high to require further purification, and this therefore results in a lower overall yield.

 

 

Synthesis and stereoisomerism
The chemical synthesis of tramadol is described in the literature. Tramadol [2-(dimethylaminomethyl)-1-(3-methoxyphenyl)cyclohexanol] has two stereogenic centers at the cyclohexane ring. Thus, 2-(dimethylaminomethyl)-1-(3-methoxyphenyl)cyclohexanol may exist in four different configurational forms:
  • (1R,2R)-isomer
  • (1S,2S)-isomer
  • (1R,2S)-isomer
  • (1S,2R)-isomer

 

The synthetic pathway leads to the racemate (1:1 mixture) of (1R,2R)-isomer and the (1S,2S)-isomer as the main products. Minor amounts of the racemic mixture of the (1R,2S)-isomer and the (1S,2R)-isomer are formed as well. The isolation of the (1R,2R)-isomer and the (1S,2S)-isomer from the diastereomeric minor racemate [(1R,2S)-isomer and (1S,2R)-isomer] is realized by the recrystallization of the hydrochlorides. The drug tramadol is a racemate of the hydrochlorides of the (1R,2R)-(+)- and the (1S,2S)-(–)-enantiomers. The resolution of the racemate [(1R,2R)-(+)-isomer / (1S,2S)-(–)-isomer] was described[62] employing (R)-(–)- or (S)-(+)-mandelic acid. This process does not find industrial application, since tramadol is used as a racemate, despite known different physiological effects of the (1R,2R)- and (1S,2S)-isomers, because the racemate showed higher analgesic activity than either enantiomer in animals and in humans.
……………………………………………………
EP 1346978 A1
Share

7 Ways of Boosting Your Metabolism

 Ayurveda  Comments Off on 7 Ways of Boosting Your Metabolism
Aug 052013
 

Girl Lifting Weights Cartoon

 

7 Ways of Boosting Your Metabolism

Many of us have a sluggish metabolism. This can make it really difficult to lose weight and extremely easy to gain weight. A slow metabolism can also make you tire out easily so you don’t get to enjoy all that life has to offer. However, there is good news. You can easily boost your metabolism naturally if you know how. Below, you will find 7 ways to increase your metabolism:

read all at

http://www.fitnea.com/7-ways-of-boosting-your-metabolism/

highlight

Eat More Spicy Foods – Hot spices like curry, cayenne pepper, black pepper, cumin, and turmeric all help the body speed up your metabolism. There are other “hot” spices that you may not think of as hot but they react in the body in this way. They include cinnamon, cardamon, ginger, and nutmeg. Try adding these tasty spices to your soups, stir-fries, casseroles, and other dishes. Curry goes great in some type of salads like quinoa salads. Some people love the taste of cinnamon in their coffee. Just add it to the grounds before you brew it.

 

 

Share

Bitter Melon (Momordica charantia Linn.)(fruit) Dried water extract).help steady your blood sugar levels

 Ayurveda, diabetes  Comments Off on Bitter Melon (Momordica charantia Linn.)(fruit) Dried water extract).help steady your blood sugar levels
May 232013
 

Helps support normal blood sugar levels with compounds called charantin and momordicin. Additional key compounds such as vicine, peptides, and polypeptide-p (plant insulin) also work together to give Bitter Melon its potency.

Bitter Melon (Momordica charantia Linn.)(fruit) Dried water extract).

 

read all at

 

http://newdrugapprovals.wordpress.com/2013/05/23/bitter-melon-momordica-charantia-linn-fruit-dried-water-extract-help-steady-your-blood-sugar-levels/

Share
May 202013
 

Moringa oleifera

The Drumstick Plant

http://miracletrees.org/

08 February 2013, Organic India, a manufacturer of herb-based functional supplements, has launched organic single ingredient Moringa products in the US.

Available in both capsule and powder formulations, the product made from powdered leaves of Moringa oleifera tree contains vitamin A, B1, B3, B12, iron, magnesium, potassium, amino acids, and polyphenols and is used for restoring internal imbalances.

Organic India national sales manager Heather Henning said the ancient therapeutic Moringa oleifera plant has been used for years and has seen increasing popularity amongst mainstream consumers worldwide.

Moringa oleifera leaf powdermoringa

“Millions of people globally use Moringa for essential nutrition — now, the US distribution channel will have access to this extraordinary plant with USDA organic certification,” Henning added.

The company said Moringa supplement, which has more B12 than steak, more vitamin A than eggs, and more calcium than milk, will be unveiled to the public at Expo West 2013.

Sonjna (Moringa oleifera) leaves with flowers

Moringa oleifera (synonym: Moringa pterygosperma) is the most widely cultivated species of the genus Moringa, which is the only genus in the family Moringaceae. English common names include moringa, and drumstick tree, from the appearance of the long, slender, triangular seed pods, horseradish tree, from the taste of the roots which resembles horseradish, or ben oil tree, from the oil derived from the seeds. The tree itself is rather slender, with drooping branches that grow to approximately 10m in height. In cultivation, it is often cut back annually to 1–2 meters and allowed to regrow so the pods and leaves remain within arm’s reach.[1][2]

In developing countries, moringa has potential to improve nutrition, boost food security, foster rural development, and support sustainable landcare.[3] It may be used as forage forlivestock, a micronutrient liquid, a natural anthelmintic and possible adjuvant.[2][4][5]

The moringa tree is grown mainly in semiarid, tropical, and subtropical areas, corresponding in the United States to USDA hardiness zones 9 and 10. While it grows best in dry, sandy soil, it tolerates poor soil, including coastal areas. It is a fast-growing, drought-resistant tree that is native to the southern foothills of the Himalayas in northwestern India.

Cultivation in Hawai’i, for commercial distribution in the United States, is in its early stages.[6]

“India is the largest producer of moringa, with an annual production of 1.1 to 1.3 million tonnes of tender fruits from an area of 380 km². Among the states, Andhra Pradesh leads in both area and production (156.65 km²) followed by Karnataka (102.8 km²) and Tamil Nadu(74.08 km²). In other states, it occupies an area of 46.13 km². Tamil Nadu is the pioneering state in·so·much as it has varied genotypes from diversified geographical areas and introductions from Sri Lanka.”[7]

Moringa is grown in home gardens and as living fences in Tamil Nadu Southern India and Thailand, where it is commonly sold in local markets.[8] In the Philippines, it is commonly grown for its leaves, which are used in soup.[9] Moringa is also actively cultivated by theWorld Vegetable Center in Taiwan, a center for vegetable research with a mission to reduce poverty and malnutrition in developing countries through improved production and consumption of vegetables. Tamil Nadu Southern India has Moringa in its folk stories and as well considered to be auspicious to grow in home. Interestingly the name in Tamil is Moorungai which sounds same as Moringa.

It is also widely cultivated in Africa, Cambodia, Nepal, Indonesia, Malaysia, Mexico, Central and South America, and Sri Lanka

An Indian drumstick (cut)

Moringa oleifera leaf, raw
Nutritional value per 100 g (3.5 oz)
Energy 64 kcal (270 kJ)
Carbohydrates 8.28 g
Dietary fiber 2.0 g
Fat 1.40 g
Protein 9.40 g
Water 78.66 g
Vitamin A equiv. 378 μg (47%)
Thiamine (vit. B1) 0.257 mg (22%)
Riboflavin (vit. B2) 0.660 mg (55%)
Niacin (vit. B3) 2.220 mg (15%)
Pantothenic acid (B5) 0.125 mg (3%)
Vitamin B6 1.200 mg (92%)
Folate (vit. B9) 40 μg (10%)
Vitamin C 51.7 mg (62%)
Calcium 185 mg (19%)
Iron 4.00 mg (31%)
Magnesium 147 mg (41%)
Manganese 0.36 mg (17%)
Phosphorus 112 mg (16%)
Potassium 337 mg (7%)
Sodium 9 mg (1%)
Zinc 0.6 mg (6%)
Percentages are relative to
US recommendations for adults.
Source: USDA Nutrient Database
Moringa oleifera pods, raw
Nutritional value per 100 g (3.5 oz)
Energy 37 kcal (150 kJ)
Carbohydrates 8.53 g
Dietary fiber 3.2 g
Fat 0.20 g
Protein 2.10 g
Water 88.20 g
Vitamin A equiv. 4 μg (1%)
Thiamine (vit. B1) 0.0530 mg (5%)
Riboflavin (vit. B2) 0.074 mg (6%)
Niacin (vit. B3) 0.620 mg (4%)
Pantothenic acid (B5) 0.794 mg (16%)
Vitamin B6 0.120 mg (9%)
Folate (vit. B9) 44 μg (11%)
Vitamin C 141.0 mg (170%)
Calcium 30 mg (3%)
Iron 0.36 mg (3%)
Magnesium 45 mg (13%)
Manganese 0.259 mg (12%)
Phosphorus 50 mg (7%)
Potassium 461 mg (10%)
Sodium 42 mg (3%)
Zinc 0.45 mg (5%)
Percentages are relative to
US recommendations for adults.
Source: USDA Nutrient Database

  1. “USDA GRIN Taxonomy”.
  2. Verzosa, Caryssa. “Malunggay and Spinach Powder (Investigatory Project Sample)”. Scribd.com. Retrieved 4-11-2012.
  3. National Research Council (2006-10-27). “Moringa”. Lost Crops of Africa: Volume II: Vegetables. Lost Crops of Africa. 2. National Academies Press. ISBN 978-0-309-10333-6. Retrieved 2008-07-15.
  4. Makkar HP, Francis G, Becker K (2007). “Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems”. Animal 1 (9): 1371–91. doi:10.1017/S1751731107000298.PMID 22444893.
  5. ^ Mahajan SG, Mali RG, Mehta AA (2007). “Protective effect of ethanolic extract of seeds of Moringa oleifera Lam. against inflammation associated with development of arthritis in rats”. J Immunotoxicol 4 (1): 39–47. doi:10.1080/15476910601115184. PMID 18958711.
  6. Ted Radovich (2010). C.R Elevitch. ed. “Farm and Forestry Production and Marketing profile for Moringa”. Specialty Crops for Pacific Island Agroforestry (Holualoa, Hawai’i: Permanent Agriculture Resources).
  7. Rajangam J., et al. (October 29 – November 2, 2001). “Status of Production and Utilisation of Moringa in Southern India”.Development potential for Moringa products (Dar es Salaam, Tanzania).
  8. Food and Agriculture Organization of the United Nations, The Vegetable Sector in Thailand, 1999
  9. Food and Agriculture Organization of the United Nations, Country Pasture/Forage Resource Profiles: Philippines
  10. Roloff, A.; Weisgerber, H.; Lang, U.; Stimm, B. (2009), “Moringa oleifera”, Weinheim: 978–3
  11. “Drumstick”. Vahrehvah.com. Retrieved 2012-04-18.

Share

AYURVEDA- BITTER MELON (Momordica charantia)

 Ayurveda  Comments Off on AYURVEDA- BITTER MELON (Momordica charantia)
May 202013
 

Bitter_Melon_long

BITTER MELON (Momordica charantia): This edible gourd should be every physician’s “go-to” plant for the 16 million or more Americans with high-normal glucose readings or ‘boderline diabetic/metabolic syndrome patients.

Preliminary evidence suggests bitter melon’s hypoglycemic action can be explained through several independent mechanisms: for one, it has been shown to increase peripheral glucose oxidation as well as glucose tolerance and insulin signaling in induced insulin resistance models (Sridhar MG, et al: Br J Nutr. 2008;99(4):806-12. Basch E, et al. Am J Health Syst Pharm. 2003;60:356-9). It also decreases hepatic gluconeogenesis, while increasing glycogen synthesis.

Bitter Melon increases insulin output from the pancreas, and it also provides a unique compound called polypeptide-P, which is an insulin mimetic with a similar structure to bovine insulin (Krawinkel MB, Keding GB. Nutr Rev. 2006;64(7 Pt 1):331-7).

Bitter_Melon_slicesBitter Melon slices.

Compounds produced by this intriguing gourd have been shown to reduce triglyceride levels in a dose-dependent manner in animal trials (Jayasooriya AP, et al. J Ethnopharmacol. 2000;72:331-6). Though we don’t yet have human data corroborating this effect, the animal studies suggest that bitter melon may have a role in reducing cardiovascular risk, particularly in people with diabetes or metabolic syndrome.

Bitter melon products are typically standardized to their constituents, momordicosides and charantin, and usually dispensed in 500-600 mg doses, twice daily, following meals. As it does have an insulin mimetic action, it may be necessary to adjust the dose of concurrently prescribed hypoglycemic drugs.

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: