AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Stable and reusable nanoscale Fe2O3-catalyzed aerobic oxidation process for the selective synthesis of nitriles and primary amides

 organic chemistry, spectroscopy, SYNTHESIS  Comments Off on Stable and reusable nanoscale Fe2O3-catalyzed aerobic oxidation process for the selective synthesis of nitriles and primary amides
Dec 292017
 

 

Green Chem., 2018, Advance Article
DOI: 10.1039/C7GC02627G, Paper
Kathiravan Murugesan, Thirusangumurugan Senthamarai, Manzar Sohail, Muhammad Sharif, Narayana V. Kalevaru, Rajenahally V. Jagadeesh
Nanoscale Fe2O3-catalyzed environmentally benign synthesis of nitriles and amides has been performed from easily accessible aldehydes and ammonia using O2.

Stable and reusable nanoscale Fe2O3-catalyzed aerobic oxidation process for the selective synthesis of nitriles and primary amides

Author affiliations

Abstract

The sustainable introduction of nitrogen moieties in the form of nitrile or amide groups in functionalized molecules is of fundamental interest because nitrogen-containing motifs are found in a large number of life science molecules, natural products and materials. Hence, the synthesis and functionalization of nitriles and amides from easily available starting materials using cost-effective catalysts and green reagents is highly desired. In this regard, herein we report the nanoscale iron oxide-catalyzed environmentally benign synthesis of nitriles and primary amides from aldehydes and aqueous ammonia in the presence of 1 bar O2 or air. Under mild reaction conditions, this iron-catalyzed aerobic oxidation process proceeds to synthesise functionalized and structurally diverse aromatic, aliphatic and heterocyclic nitriles. Additionally, applying this iron-based protocol, primary amides have also been prepared in a water medium.

1H NMR (300 MHz, Chloroform-d) δ 7.17 – 6.96 (m, 2H), 6.93 – 6.70 (m, 1H), 4.33 – 4.11 (m, 4H). 13C NMR (75 MHz, Chloroform-d) δ 147.75 , 143.80 , 125.87 , 121.21 , 118.91 , 118.25 , 104.38 , 64.59 , 64.12 . Off white solid

STR1 STR2 str3

STR1

cas 19102-07-9

  • 1,4-Benzodioxan-6-carbonitrile (8CI)
  • 2,3-Dihydro-1,4-benzodioxin-6-carbonitrile
  • 1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)nitrile

 

MP

Melting Point, °C
105 – 106

Tetrahedron, 2015, vol. 71,  29, p. 4883 – 4887

NMR PREDICTS

1H NMR

 

STR1

 

13C NMR PREDICT

STR2

 

More…………….

Journal of the American Chemical Society, 2001, vol. 123, 49, p. 12202 – 12206

STR1

More………….

RSC Advances, 2013, vol. 3, 44, p. 22389 – 22396

http://www.rsc.org/suppdata/ra/c3/c3ra44386h/c3ra44386h.pdf

STR1 STR2 str3

MORE……..

Organic Letters, 2017, vol. 19,  12, p. 3095 – 3098

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b01199/suppl_file/ol7b01199_si_001.pdf

2,3-Dihydrobenzo[b][1,4]dioxine-6-carbonitrile (Scheme 1, 2n) According to the general procedure A, the reaction of 1n (0.20 mmol), zinc cyanide (2.0 equiv), PCyPh2 (0.20 equiv) and Pd(OAc)2 (0.05 equiv) in dioxane (0.25 M) for 16 h at 150 °C, afforded after work-up and chromatography the title compound in 75% yield (24.2 mg). White solid. 1H NMR (500 MHz, CDCl3) δ 7.17-7.11 (m, 2H), 6.91 (d, J = 8.1 Hz, 1H), 4.32-4.31 (m, 2H), 4.30- 4.26 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 147.84, 143.91, 126.04, 121.37, 119.01, 118.37, 104.62, 64.71, 64.24.

STR1 STR2

//////////////

Share

Efficient formation of nitriles in the vapor-phase catalytic dehydration of aldoximes

 PROCESS, SYNTHESIS  Comments Off on Efficient formation of nitriles in the vapor-phase catalytic dehydration of aldoximes
Mar 102016
 

 

Efficient formation of nitriles in the vapor-phase catalytic dehydration of aldoximes

Green Chem., 2016, Advance Article
DOI: 10.1039/C6GC00384B, Paper
Daolai Sun, Eisyun Kitamura, Yasuhiro Yamada, Satoshi Sato
Nitriles were efficiently produced in a vapor-phase dehydration of aldoximes over SiO2 catalysts without external heat supply.
A vapor-phase dehydration of acetaldoxime to acetonitrile was investigated over various solid catalysts. Among the tested catalysts, ZrO2, Al2O3 and SiO2 showed high catalytic activity for the formation of acetonitrile from acetaldoxime, while the correlation between catalytic activity and the acid property of the catalysts was not observed. Weak acidic sites such as silanols sufficiently work as catalytic sites for the dehydration, which does not require strong acids such as zeolites. Several SiO2 catalysts with different physical properties were tested, and the SiO2with the smallest pore size and the highest specific surface area showed the highest catalytic activity for the formation of acetonitrile. Because the dehydration of acetaldoxime to acetonitrile is exothermic, a large amount of reaction heat was generated during the reaction, and the reaction temperature was found to be significantly affected by the feed rate of the reactant and the flow rate of the carrier gas. In order to effectively utilize the in situ generated reaction heat, the dehydration of acetaldoxime to acetonitrile without using the external heat supply was conducted. The temperature was controllable even in the absence of the external heat, and the acetonitrile yield higher than 90% could be achieved in such a green operation under the environment-friendly adiabatic conditions.

Efficient formation of nitriles in the vapor-phase catalytic dehydration of aldoximes

*Corresponding authors
aGraduate School of Engineering, Chiba University, Chiba, Japan
E-mail: satoshi@faculty.chiba-u.jp
Fax: +81 43 290 3401
Tel: +81 43 290 3377
Green Chem., 2016, Advance Article

DOI: 10.1039/C6GC00384B

//////

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: