AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Sreeni Labs Private Limited, Hyderabad, India ready to deliver New, Economical, Scalable Routes to your advanced intermediates & API’s in early Clinical Drug Development Stages

 companies, INDIA, MANUFACTURING, new drugs, PRECLINICAL, PROCESS, regulatory  Comments Off on Sreeni Labs Private Limited, Hyderabad, India ready to deliver New, Economical, Scalable Routes to your advanced intermediates & API’s in early Clinical Drug Development Stages
Jul 162016
 

str1

 

Sreeni Labs Private Limited, Hyderabad, India is ready to take up challenging synthesis projects from your preclinical and clinical development and supply from few grams to multi-kilo quantities. Sreeni Labs has proven route scouting ability  to  design and develop innovative, cost effective, scalable routes by using readily available and inexpensive starting materials. The selected route will be further developed into a robust process and demonstrate on kilo gram scale and produce 100’s of kilos of in a relatively short time.

Accelerate your early development at competitive price by taking your route selection, process development and material supply challenges (gram scale to kilogram scale) to Sreeni Labs…………

INTRODUCTION

Sreeni Labs based in Hyderabad, India is working with various global customers and solving variety of challenging synthesis problems. Their customer base ranges from USA, Canada, India and Europe. Sreeni labs Managing Director, Dr. Sreenivasa Reddy Mundla has worked at Procter & Gamble Pharmaceuticals and Eli Lilly based in USA.

The main strength of Sreeni Labs is in the design, development of innovative and highly economical synthetic routes and development of a selected route into a robust process followed by production of quality product from 100 grams to 100s of kg scale. Sreeni Labs main motto is adding value in everything they do.

They have helped number of customers from virtual biotech, big pharma, specialty chemicals, catalog companies, and academic researchers and drug developers, solar energy researchers at universities and institutions by successfully developing highly economical and simple chemistry routes to number of products that were made either by very lengthy synthetic routes or  by using highly dangerous reagents and Suzuki coupling steps. They are able to supply materials from gram scale to multi kilo scale in a relatively short time by developing very short and efficient synthetic routes to a number of advanced intermediates, specialty chemicals, APIs and reference compounds. They also helped customers by drastically reducing number of steps, telescoping few steps into a single pot. For some projects, Sreeni Labs was able to develop simple chemistry and avoided use of palladium & expensive ligands. They always begin the project with end in the mind and design simple chemistry and also use readily available or easy to prepare starting materials in their design of synthetic routes

Over the years, Sreeni labs has successfully made a variety of products ranging from few mg to several kilogram scale. Sreeni labs has plenty of experience in making small select libraries of compounds, carbocyclic compounds like complex terpenoids, retinal derivatives, alkaloids, and heterocyclic compounds like multi substituted beta carbolines, pyridines, quinolines, quinolones, imidazoles, aminoimidazoles, quinoxalines, indoles, benzimidazoles, thiazoles, oxazoles, isoxazoles, carbazoles, benzothiazoles, azapines, benzazpines, natural and unnatural aminoacids, tetrapeptides, substituted oligomers of thiophenes and fused thiophenes, RAFT reagents, isocyanates, variety of ligands,  heteroaryl, biaryl, triaryl compounds, process impurities and metabolites.

Sreeni Labs is Looking for any potential opportunities where people need development of cost effective scalable routes followed by quick scale up to produce quality products in the pharmaceutical & specialty chemicals area. They can also take up custom synthesis and scale up of medchem analogues and building blocks.  They have flexible business model that will be in sink with customers. One can test their abilities & capabilities by giving couple of PO based (fee for service) projects.

Some of the compounds prepared by Sreeni labs;

str1str1

str1str1

str1str1

str1str1

str1str1

str1str1

 

 

 

See presentation below

LINK ON SLIDESHARE

Managing Director at Sreeni Labs Private Limited

 

Few Case Studies : Source SEEENI LABS

QUOTE………….

One virtual biotech company customer from USA, through a common friend approached Sreeni Labs and told that they are buying a tetrapeptide from Bachem on mg scale at a very high price and requested us to see if we can make 5g. We accepted the challenge and developed solution phase chemistry and delivered 6g and also the process procedures in 10 weeks time. The customer told that they are using same procedures with very minor modifications and produced the tetrapeptide ip to 100kg scale as the molecule is in Phase III.

 

One East coast customer in our first meeting told that they are working with 4 CROs of which two are in India and two are in China and politely asked why they should work with Sreeni Labs. We told that give us a project where your CROs failed to deliver and we will give a quote and work on it. You pay us only if we deliver and you satisfy with the data. They immediately gave us a project to make 1.5g and we delivered 2g product in 9 weeks. After receiving product and the data, the customer was extremely happy as their previous CRO couldn’t deliver even a milligram in four months with 3 FTEs.

 

One Midwest biotech company was struggling to remove palladium from final API as they were doing a Suzuki coupling with a very expensive aryl pinacol borane and bromo pyridine derivative with an expensive ligand and relatively large amount of palldium acetate. The cost of final step catalyst, ligand and the palladium scavenging resin were making the project not viable even though the product is generating excellent data in the clinic. At this point we signed an FTE agreement with them and in four months time, we were able to design and develop a non suzuki route based on acid base chemistry and made 15g of API and compared the analytical data and purity with the Suzuki route API. This solved all three problems and the customer was very pleased with the outcome.

 

One big pharma customer from east coast, wrote a structure of chemical intermediate on a paper napkin in our first meeting and asked us to see if we can make it. We told that we can make it and in less than 3 weeks time we made a gram sample and shared the analytical data. The customer was very pleased and asked us to make 500g. We delivered in 4 weeks and in the next three months we supplied 25kg of the same product.

 

Through a common friend reference, a European customer from a an academic institute, sent us an email requesting us to quote for 20mg of a compound with compound number mentioned in J. med. chem. paper. It is a polycyclic compound with four contiguous stereogenic centers.  We gave a quote and delivered 35 mg of product with full analytical data which was more pure than the published in literature. Later on we made 8g and 6g of the same product.

 

One West coast customer approached us through a common friend’s reference and told that they need to improve the chemistry of an advanced intermediate for their next campaign. At that time they are planning to make 15kg of that intermediate and purchased 50kg of starting raw material for $250,000. They also put five FTEs at a CRO  for 5 months to optimize the remaining 5 steps wherein they are using LAH, Sodium azide,  palladium catalyst and a column chromatography. We requested the customer not to purchase the 50kg raw material, and offered that we will make the 15kg for the price of raw material through a new route  in less than three months time. You pay us only after we deliver 15 kg material. The customer didn’t want to take a chance with their timeline as they didn’t work with us before but requested us to develop the chemistry. In 7 weeks time, we developed a very simple four step route for their advanced intermediate and made 50g. We used very inexpensive and readily available starting material. Our route gave three solid intermediates and completely eliminated chromatographic purifications.

 

One of my former colleague introduced an academic group in midwest and brought us a medchem project requiring synthesis of 65 challenging polyene compounds on 100mg scale. We designed synthetic routes and successfully prepared 60 compounds in a 15 month time.  

UNQUOTE…………

 

The man behind Seeni labs is Dr.Sreenivasa  Reddy Mundla

Sreenivasa Reddy

Dr. Sreenivasa Reddy Mundla

Managing Director at Sreeni Labs Private Limited

Sreeni Labs Private Limited

Road No:12, Plot No:24,25,26

  • IDA, Nacharam
    Hyderabad, 500076
    Telangana State, India

Links

LINKEDIN https://in.linkedin.com/in/sreenivasa-reddy-10b5876

FACEBOOK https://www.facebook.com/sreenivasa.mundla

RESEARCHGATE https://www.researchgate.net/profile/Sreenivasa_Mundla/info

EMAIL mundlasr@hotmail.com,  Info@sreenilabs.com, Sreeni@sreenilabs.com

Dr. Sreenivasa Mundla Reddy

Dr. M. Sreenivasa Reddy obtained Ph.D from University of Hyderabad under the direction Prof Professor Goverdhan Mehta in 1992. From 1992-1994, he was a post doctoral fellow at University of Wisconsin in Professor Jame Cook’s lab. From 1994 to 2000,  worked at Chemical process R&D at Procter & Gamble Pharmaceuticals (P&G). From 2001 to 2007 worked at Global Chemical Process R&D at Eli Lilly and Company in Indianapolis. 

In 2007  resigned to his  job and founded Sreeni Labs based in Hyderabad, Telangana, India  and started working with various global customers and solving various challenging synthesis problems. 
The main strength of Sreeni Labs is in the design, development of a novel chemical route and its development into a robust process followed by production of quality product from 100 grams to 100’s of kg scale.
 

They have helped number of customers by successfully developing highly economical simple chemistry routes to number of products that were made by Suzuki coupling. they are able to shorten the route by drastically reducing number of steps, avoiding use of palladium & expensive ligands. they always use readily available or easy to prepare starting materials in their design of synthetic routes.

Sreeni Labs is Looking for any potential opportunities where people need development of cost effective scalable routes followed by quick scale up to produce quality products in the pharmaceutical & specialty chemicals area. They have flexible business model that will be in sink with customers. One can test their abilities & capabilities by giving PO based projects

Experience

Founder & Managing Director

Sreeni Labs Private Limited

August 2007 – Present (8 years 11 months)

Sreeni Labs Profile

Sreeni Labs Profile

View On SlideShare

Principal Research Scientist

Eli Lilly and Company

March 2001 – August 2007 (6 years 6 months)

Senior Research Scientist

Procter & Gamble

July 1994 – February 2001 (6 years 8 months)

Education

University of Hyderabad

Doctor of Philosophy (Ph.D.), 
1986 – 1992

 

PUBLICATIONS

Article: Expansion of First-in-Class Drug Candidates That Sequester Toxic All-Trans-Retinal and Prevent Light-Induced Retinal Degeneration

Jianye Zhang · Zhiqian Dong · Sreenivasa Reddy Mundla · X Eric Hu · William Seibel ·Ruben Papoian · Krzysztof Palczewski · Marcin Golczak

Article: ChemInform Abstract: Regioselective Synthesis of 4Halo ortho-Dinitrobenzene Derivative

Sreenivasa Mundla

Aug 2010 · ChemInform

Article: Optimization of a Dihydropyrrolopyrazole Series of Transforming Growth Factor-β Type I Receptor Kinase Domain Inhibitors: Discovery of an Orally Bioavailable Transforming Growth Factor-β Receptor Type I Inhibitor as Antitumor Agent

Hong-yu Li · William T. McMillen · Charles R. Heap · Denis J. McCann · Lei Yan · Robert M. Campbell · Sreenivasa R. Mundla · Chi-Hsin R. King · Elizabeth A. Dierks · Bryan D. Anderson · Karen S. Britt · Karen L. Huss

Apr 2008 · Journal of Medicinal Chemistry

Article: ChemInform Abstract: A Concise Synthesis of Quinazolinone TGF-β RI Inhibitor Through One-Pot Three-Component Suzuki—Miyaura/Etherification and Imidate—Amide Rearrangement Reactions

Hong-yu Li · Yan Wang · William T. McMillen · Arindam Chatterjee · John E. Toth ·Sreenivasa R. Mundla · Matthew Voss · Robert D. Boyer · J. Scott Sawyer

Feb 2008 · ChemInform

Article: ChemInform Abstract: A Concise Synthesis of Quinazolinone TGF-β RI Inhibitor Through One-Pot Three-Component Suzuki—Miyaura/Etherification and Imidate—Amide Rearrangement Reactions

Hong-yu Li · Yan Wang · William T. McMillen · Arindam Chatterjee · John E. Toth ·Sreenivasa R. Mundla · Matthew Voss · Robert D. Boyer · J. Scott Sawyer

Nov 2007 · Tetrahedron

Article: Dihydropyrrolopyrazole Transforming Growth Factor-β Type I Receptor Kinase Domain Inhibitors: A Novel Benzimidazole Series with Selectivity versus Transforming Growth Factor-β Type II Receptor Kinase and Mixed Lineage Kinase-7

Hong-yu Li · Yan Wang · Charles R Heap · Chi-Hsin R King · Sreenivasa R Mundla · Matthew Voss · David K Clawson · Lei Yan · Robert M Campbell · Bryan D Anderson · Jill R Wagner ·Karen Britt · Ku X Lu · William T McMillen · Jonathan M Yingling

Apr 2006 · Journal of Medicinal Chemistry

Read full-textSource

Article: Studies on the Rh and Ir mediated tandem Pauson–Khand reaction. A new entry into the dicyclopenta[ a, d]cyclooctene ring system

Hui Cao · Sreenivasa R. Mundla · James M. Cook

Aug 2003 · Tetrahedron Letters

Article: ChemInform Abstract: A New Method for the Synthesis of 2,6-Dinitro and 2Halo6-nitrostyrenes

Sreenivasa R. Mundla

Nov 2000 · ChemInform

Article: ChemInform Abstract: A Novel Method for the Efficient Synthesis of 2-Arylamino-2-imidazolines

Read at

[LINK]

Patents by Inventor Dr. Sreenivasa Reddy Mundla

  • Patent number: 7872020

    Abstract: The present invention provides crystalline 2-(6-methyl-pyridin-2-yl)-3-[6-amido-quinolin-4-yl)-5,6-dihydro -4H-pyrrolo[1,2-b]pyrazole monohydrate.

    Type: Grant

    Filed: June 29, 2006

    Date of Patent: January 18, 2011

    Assignee: Eli Lilly and Company

    Inventor: Sreenivasa Reddy Mundla

  • Publication number: 20100120854

    Abstract: The present invention provides crystalline 2-(6-methyl-pyridin-2-yl)-3-[6-amido-quinolin-4-yl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole monohydrate.

    Type: Application

    Filed: June 29, 2006

    Publication date: May 13, 2010

    Applicant: ELI LILLY AND COMPANY

    Inventor: Sreenivasa Reddy Mundla

  • Patent number: 6066740

    Abstract: The present invention provides a process for making 2-amino-2-imidazoline, guanidine, and 2-amino-3,4,5,6-tetrahydroyrimidine derivatives by preparing the corresponding activated 2-thio-subsituted-2-derivative in a two-step, one-pot procedure and by further reacting yields this isolated derivative with the appropriate amine or its salts in the presence of a proton source. The present process allows for the preparation of 2-amino-2-imidazolines, quanidines, and 2-amino-3,4,5,6-tetrahydropyrimidines under reaction conditions that eliminate the need for lengthy, costly, or multiple low yielding steps, and highly toxic reactants. This process allows for improved yields and product purity and provides additional synthetic flexibility.

    Type: Grant

    Filed: November 25, 1997

    Date of Patent: May 23, 2000

    Assignee: The Procter & Gamble Company

    Inventors: Michael Selden Godlewski, Sean Rees Klopfenstein, Sreenivasa Reddy Mundla, William Lee Seibel, Randy Stuart Muth

TGF-β inhibitors

US 7872020 B2

Sreenivasa Reddy Mundla

The present invention provides 2-(6-methyl-pyridin-2-yl)-3-[6-amido-quinolin-4-yl) -5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole monohydrate, i.e., Formula I.

Figure US07872020-20110118-C00002

EXAMPLE 1 Preparation of 2-(6-methyl-pyridin-2-yl)-3-[6-amido-quinolin-4-yl-5,6-dihydro-4H -pyrrolo[1,2-b]pyrazole monohydrate

Figure US07872020-20110118-C00008

Galunisertib

1H NMR (CDCl3): δ=9.0 ppm (d, 4.4 Hz, 1H); 8.23-8.19 ppm (m, 2H); 8.315 ppm (dd, 1.9 Hz, 8.9 Hz, 1H); 7.455 ppm (d, 4.4 Hz, 1H); 7.364 ppm (t, 7.7 Hz, 1H); 7.086 ppm (d, 8.0 Hz, 1H); 6.969 ppm (d, 7.7 Hz, 1H); 6.022 ppm (m, 1H); 5.497 ppm (m, 1H); 4.419 ppm (t, 7.3 Hz, 2H); 2.999 ppm (m, 2H); 2.770 ppm (p, 7.2 Hz, 7.4 Hz, 2H); 2.306 ppm (s, 3H); 1.817 ppm (m, 2H). MS ES+: 370.2; Exact: 369.16

ABOVE MOLECULE IS

https://newdrugapprovals.org/2016/05/04/galunisertib/

Galunisertib

Phase III

LY-2157299

CAS No.700874-72-2

 

 

READ MY PRESENTATION ON

Accelerating Generic Approvals, see how you can accelerate your drug development programme

Accelerating Generic Approvals by Dr Anthony Crasto

KEYWORDS   Sreenivasa Mundla Reddy, Managing Director, Sreeni Labs Private Limited, Hyderabad, Telangana, India,  new, economical, scalable routes, early clinical drug development stages, Custom synthesis, custom manufacturing, drug discovery, PHASE 1, PHASE 2, PHASE 3,  API, drugs, medicines

Share

Spray drying

 drugs, GENERIC, SYNTHESIS  Comments Off on Spray drying
Jun 042015
 

Laboratory-scale spray dryer.
A=Solution or suspension to be dried in, B=Atomization gas in, 1= Drying gas in, 2=Heating of drying gas, 3=Spraying of solution or suspension, 4=Drying chamber, 5=Part between drying chamber and cyclone, 6=Cyclone, 7=Drying gas is taken away, 8=Collection vessel of product, arrows mean that this is co-current lab-spraydryer

Spray drying is a method of producing a dry powder from a liquid or slurry by rapidly drying with a hot gas. This is the preferred method of drying of many thermally-sensitive materials such as foods and pharmaceuticals. A consistent particle size distribution is a reason for spray drying some industrial products such as catalysts. Air is the heated drying medium; however, if the liquid is a flammable solvent such as ethanol or the product is oxygen-sensitive then nitrogen is used.[1]

All spray dryers use some type of atomizer or spray nozzle to disperse the liquid or slurry into a controlled drop size spray. The most common of these are rotary disks and single-fluid high pressure swirl nozzles. Atomizer wheels are known to provide broader particle size distribution, but both methods allow for consistent distribution of particle size.[2] Alternatively, for some applications two-fluid or ultrasonic nozzles are used. Depending on the process needs, drop sizes from 10 to 500 µm can be achieved with the appropriate choices. The most common applications are in the 100 to 200 µm diameter range. The dry powder is often free-flowing.[3]

The most common spray dryers are called single effect as there is only one drying air on the top of the drying chamber (see n°4 on the scheme). In most cases the air is blown in co-current of the sprayed liquid. The powders obtained with such type of dryers are fine with a lot of dusts and a poor flowability. In order to reduce the dusts and increase the flowability of the powders, there is since over 20 years a new generation of spray dryers called multiple effect spray dryers. Instead of drying the liquid in one stage, the drying is done through two steps: one at the top (as per single effect) and one for an integrated static bed at the bottom of the chamber. The integration of this fluidized bed allows, by fluidizing the powder inside a humid atmosphere, to agglomerate the fine particles and to obtain granules having commonly a medium particle size within a range of 100 to 300 µm. Because of this large particle size, these powders are free-flowing.

The fine powders generated by the first stage drying can be recycled in continuous flow either at the top of the chamber (around the sprayed liquid) or at the bottom inside the integrated fluidized bed. The drying of the powder can be finalized on an external vibrating fluidized bed.

The hot drying gas can be passed as a co-current or counter-current flow to the atomiser direction. The co-current flow enables the particles to have a lower residence time within the system and the particle separator (typically a cyclone device) operates more efficiently. The counter-current flow method enables a greater residence time of the particles in the chamber and usually is paired with a fluidized bed system.

Alternatives to spray dryers are:[4]

  1. Freeze dryer: a more-expensive batch process for products that degrade in spray drying. Dry product is not free-flowing.
  2. Drum dryer: a less-expensive continuous process for low-value products; creates flakes instead of free-flowing powder.
  3. Pulse combustion dryer: A less-expensive continuous process that can handle higher viscosities and solids loading than a spray dryer, and that sometimes gives a freeze-dry quality powder that is free-flowing.

Spray dryer

Spray drying nozzles.

Schematic illustration of spray drying process.

A spray dryer takes a liquid stream and separates the solute or suspension as a solid and the solvent into a vapor. The solid is usually collected in a drum or cyclone. The liquid input stream is sprayed through a nozzle into a hot vapor stream and vaporised. Solids form as moisture quickly leaves the droplets. A nozzle is usually used to make the droplets as small as possible, maximising heat transfer and the rate of water vaporisation. Droplet sizes can range from 20 to 180 μm depending on the nozzle.[3] There are two main types of nozzles: high pressure single fluid nozzle (50 to 300 bars) and two-fluid nozzles: one fluid is the liquid to dry and the second is compressed gas (generally air at 1 to 7 bars).

Spray dryers can dry a product very quickly compared to other methods of drying. They also turn a solution, or slurry into a dried powder in a single step, which can be advantageous for profit maximization and process simplification.

 

The Spray Drying Process

The spray drying process is older than might commonly be imagined.  Earliest descriptions date from 1860 with the first patented design recorded in 1872. The basic idea of spray drying is the production of highly dispersed powders from a fluid feed by evaporating the solvent. This is achieved by mixing a heated gas with an atomized (sprayed) fluid of high surface-to-mass ratio droplets, ideally of equal size, within a vessel (drying chamber), causing the solvent to evaporate uniformly and quickly through direct contact.
Spray drying can be used in a wide range of applications where the production of a free-flowing powder is required. This method of dehydration has become the most successful one in the following areas:

  • Pharmaceuticals
  • Bone and tooth amalgams
  • Beverages
  • Flavours, colourings and plant extracts
  • Milk and egg products
  • Plastics, polymers and resins
  • Soaps and detergents
  • Textiles and many more

Almost all other methods of drying, including use of ovens, freeze dryers or rotary evaporators, produce a mass of material requiring further processing (e.g. grinding and filtering) therefore, producing particles of irregular size and shape. Spray drying on the other hand, offers a very flexible control over powder particle properties such as density, size, flow characteristics and moisture content.

 

Spray drying dia

Design and Control

The challenges facing both designers and users are to increase production, improve powder quality and reduce costs. This requires an understanding of the process and a robust control implementation.

 

Spray drying consists of the following phases:

 

  • Feed preparation: This can be a homogenous, pumpable and free from impurities solution, suspension or paste.
  • Atomization (transforming the feed into droplets): Most critical step in the process. The degree of atomization controls the drying rate and therefore the dryer size. The most commonly used atomization techniques are:

1. Pressure nozzle atomization: Spray created by forcing the fluid through an orifice. This is an energy efficient method which also offers the narrowest particle size distribution.
2. Two-fluid nozzle atomization: Spray created by mixing the feed with a compressed gas. Least energy efficient method. Useful for making extremely fine particles.
3. Centrifugal atomization: Spray created by passing the feed through or across a rotating disk. Most resistant to wear and can generally be run for longer periods of time.

  • Drying: A constant rate phase ensures moisture evaporates rapidly from the surface of the particle. This is followed by a falling rate period where the drying is controlled by diffusion of water to the surface of the particle.
  • Separation of powder from moist gas: To be carried out in an economical (e.g. recycling the drying medium) and pollutant-free manner. Fine particles are generally removed with cyclones, bag filters, precipitators or scrubbers.
  • Cooling and packaging.

 

A control system must therefore provide flexibility in the way in which accurate and repeatable control of the spray drying is achieved and will include the following features:

 

  • Precise loop control with setpoint profile programming
  • Recipe Management System for easy parameterisation
  • Sequential control for complex control strategies
  • Secure collection of on-line data from the system for analysis and evidence
  • Local operator display with clear graphics and controlled access to parameters

Micro-encapsulation

Spray drying often is used as an encapsulation technique by the food and other industries. A substance to be encapsulated (the load) and an amphipathic carrier (usually some sort of modified starch) are homogenized as a suspension in water (the slurry). The slurry is then fed into a spray drier, usually a tower heated to temperatures well over the boiling point of water.

As the slurry enters the tower, it is atomized. Partly because of the high surface tension of water and partly because of thehydrophobic/hydrophilic interactions between the amphipathic carrier, the water, and the load, the atomized slurry forms micelles. The small size of the drops (averaging 100 micrometers in diameter) results in a relatively large surface area which dries quickly. As the water dries, the carrier forms a hardened shell around the load.[5]

Load loss is usually a function of molecular weight. That is, lighter molecules tend to boil off in larger quantities at the processing temperatures. Loss is minimized industrially by spraying into taller towers. A larger volume of air has a lower average humidity as the process proceeds. By the osmosis principle, water will be encouraged by its difference in fugacities in the vapor and liquid phases to leave the micelles and enter the air. Therefore, the same percentage of water can be dried out of the particles at lower temperatures if larger towers are used. Alternatively, the slurry can be sprayed into a partial vacuum. Since the boiling point of a solvent is the temperature at which the vapor pressure of the solvent is equal to the ambient pressure, reducing pressure in the tower has the effect of lowering the boiling point of the solvent.

The application of the spray drying encapsulation technique is to prepare “dehydrated” powders of substances which do not have any water to dehydrate. For example, instant drink mixes are spray dries of the various chemicals which make up the beverage. The technique was once used to remove water from food products; for instance, in the preparation of dehydrated milk. Because the milk was not being encapsulated and because spray drying causes thermal degradation, milk dehydration and similar processes have been replaced by other dehydration techniques. Skim milk powders are still widely produced using spray drying technology around the world, typically at high solids concentration for maximum drying efficiency. Thermal degradation of products can be overcome by using lower operating temperatures and larger chamber sizes for increased residence times.[6]

Recent research is now suggesting that the use of spray-drying techniques may be an alternative method for crystallization of amorphous powders during the drying process since the temperature effects on the amorphous powders may be significant depending on drying residence times.[7][8]

Spray drying applications

Food: milk powder, coffee, tea, eggs, cereal, spices, flavorings, starch and starch derivatives, vitamins, enzymes, stevia, colourings, etc.

Pharmaceutical: antibiotics, medical ingredients, additives

Industrial: paint pigments, ceramic materials, catalyst supports, microalgae

Nano spray dryer

The nano spray dryer offers new possibilities in the field of spray drying. It allows to produce particles in the range of 300 nm to 5 μm with a narrow size distribution. High yields are produced up to 90% and the minimal sample amount is 1 mL.

 

Pharmaceutical Spray drying is a very fast method of drying due to the very large surface area created by the atomization of the liquid feed. As a consequence, high heat transfer coefficients are generated and the fast stabilisation of the feed at moderate temperatures makes this method very attractive for heat sensitive materials.

Spray drying provides unprecedented particle control and allows previously unattainable delivery methods and molecular characteristics. These advantages allow exploration into employing previously unattainable delivery methods and molecular characteristics.

Five things you might not know about spray drying

  1. Spray drying is suitable for heat sensitive materials
    Spray drying is already used for the processing of heat sensitive materials (e.g. proteins, peptides and polymers with low Tg temperatures) on an industrial scale. Evaporation from the spray droplets starts immediately after contact with the hot process gas. Since the thermal energy is consumed by evaporation, the droplet temperature is kept at a level where no harm is caused to the product.
  2. Spray drying turns liquid into particles within seconds
    The large surface of the droplets provides near instantaneous evaporation, making it possible to produce particles with a crystalline or amorphous structure. The particle morphology is determined by the operating parameters and excipients added to the feed stock.
  3. Spray drying is relatively easy to replicate on a commercial scale
    GEA Niro has been producing industrial scale spray drying plants for well over half a century. Our process know-how, products and exceptional facilities put us in a unique position to advise and demonstrate how products and processes will behave on a large scale.
  4. Spray drying is a robust process
    Spray drying is a continuous process. Once the set points are established, all critical process parameters are kept constant throughout the batch. Information for the batch record can be monitored or logged, depending on the system selected.
  5. Spray drying can be effectively validated
    The precise control of all critical process parameters in spray drying provides a high degree of assurance that the process consistently produces a product that meets set specifi cations.

The spray drying process

Spray drying is a very fast method of drying due to the very large surface area created by the atomization of the liquid feed and high heat transfer coefficients generated. The short drying time, and consequently fast stabilisation of feed material at moderate temperatures, means spray drying is also suitable for heat-sensitive materials.

As a technique, spray drying consists of four basic stages:

  1. Atomization: A liquid feed stock is atomized into droplets by means of a nozzle or rotary atomizer. Nozzles use pressure or compressed gas to atomize the feed while rotary atomizers employ an atomizer wheel rotating at high speed.
  2. Drying: Hot process gas (air or nitrogen) is brought into contact with the atomized feed guided by a gas disperser, and evaporation begins. The balance between temperature, flow rate and droplet size controls the drying process.
  3. Particle formation: As the liquid rapidly evaporates from the droplet surface, a solid particle forms and falls to the bottom of the drying chamber.
  4. Recovery: The powder is recovered from the exhaust gas using a cyclone or a bag filter. The whole process generally takes no more than a few seconds.

 

References

  1.  A. S. Mujumdar (2007). Handbook of industrial drying. CRC Press. p. 710. ISBN 1-57444-668-1.
  2.  http://www.elantechnology.com/spray-drying/
  3.  Walter R. Niessen (2002). Combustion and incineration processes. CRC Press. p. 588. ISBN 0-8247-0629-3.
  4.  Onwulata p.66
  5.  Ajay Kumar (2009). Bioseparation Engineering. I. K. International. p. 179. ISBN 93-8002-608-0.
  6. Onwulata pp.389–430
  7.  Onwulata p.268
  8.  Chiou, D.; Langrish, T. A. G. (2007). “Crystallization of Amorphous Components in Spray-Dried Powders”. Drying Technology 25: 1427. doi:10.1080/07373930701536718.

Bibliography

Further reading

External links

TAKE A TOUR
TAKE A TOUR
Ahmednagar,  Maharashtra, India
////////////
Share

Enzymatic resolution of antidepressant drug precursors in an undergraduate laboratory

 drugs, spectroscopy, SYNTHESIS  Comments Off on Enzymatic resolution of antidepressant drug precursors in an undergraduate laboratory
Apr 012015
 

Enzymatic resolution of antidepressant drug precursors in an undergraduate laboratory

EducaçãoQuim. Nova 2015, 38(2), 285-287

Enzymatic resolution of antidepressant drug precursors in an undergraduate laboratory

Luís M. R. SolanoI; Nuno M. T. LourençoII,*
This paper describes a multi-step chemo-enzymatic synthesis of antidepressant drug precursors.

http://dx.doi.org/10.5935/0100-4042.20140306

Publicado online: novembro 13, 2014
Quim. Nova, Vol. 38, No. 2, 285-287, 2015
Educação http://dx.doi.org/10.5935/0100-4042.20140306
*e-mail: nmtl@tecnico.ulisboa.pt
ENZYMATIC RESOLUTION OF ANTIDEPRESSANT DRUG PRECURSORS IN AN UNDERGRADUATE LABORATORY
Luís M. R. Solanoa and Nuno M. T. Lourençob,* a Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal b Departamento de Bioengenharia, Instituto de Biotecnologia e Bioengenharia, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
Recebido em 07/07/2014; aceito em 17/09/2014; publicado na web em 13/11/2014
The use of biocatalysts in synthetic chemistry is a conventional methodology for preparing enantiomerically enriched compounds. Despite this fact, the number of experiments in chemical teaching laboratories that demonstrate the potential of enzymes in synthetic organic chemistry is limited. We describe a laboratory experiment in which students synthesized a chiral secondary alcohol that can be used in the preparation of antidepressant drugs. This experiment was conducted by individual students as part of a Drug Synthesis course held at the Pharmacy Faculty, Lisbon University. This laboratory experiment requires six laboratory periods, each lasting four hours. During the first four laboratory periods, students synthesized and characterized a racemic ester using nuclear magnetic resonance spectroscopy and gas chromatography. During the last two laboratory periods, they performed enzymatic hydrolysis resolution of the racemic ester using Candida antarctica lipase B to yield enantiomerically enriched secondary alcohol. Students successfully prepared the racemic ester with a 70%-81% overall yield in three steps. The enzymatic hydrolysis afforded (R)- secondary alcohol with good enantioselectivity (90%–95%) and reasonable yields (10%–19%). In these experiments, students were exposed to theoretical and practical concepts of aromatic acylation, ketone reduction, esterification, and enzymatic hydrolysis. Keywords: sec-alcohols; esters; lípase; enantiomers; resolution.
READ AT
 Displaying image008.png
Displaying image010.png
Displaying image011.png
Displaying image012.png
Displaying image026.png
Displaying image028.png
Displaying image029.png
Displaying image030.png
Displaying image031.png
…………….
You might enjoy reading:

– See more at: http://organicsynthesisinternational.blogspot.in/#sthash.6AgqWtpw.dpuf

Share
Jan 012015
 

IMAGE……….http://www.laboratorytalk.com/life-sciences-and-clinical-laboratory-equipment/synthesis-systems/flow-chemistry-system-aids-synthesis-of-cns-drugs/404882.article

 

 

1…………………

 

Gleevec, developed by Novartis, is a tyrosine kinase inhibitor used for the treatment of chronic myeloid leukaemia and gastrointestinal stromal tumours. The drug molecule represents a particularly challenging target for flow chemistry because of the low solubility of many of the reaction components required for its synthesis. The team devised a new synthesis route that prevents the equipment blockages from product precipitation and avoids many of the labour and time intensive practices of traditional batch-based preparation.

 

flow synthesisThe flow-based route required minimal manual intervention and was achieved despite poor solubility of many reaction componentsLINK………...http://www.rsc.org/chemistryworld/2013/01/flow-synthesis-anticancer-drug

2…………………..

Malaria is a serious global health issue. Artemisinin combination treatments are the first-line drugs, but supplies are limited because artemisinin is obtained solely by extraction from Artemisia annua. A continuous-flow process that converts dihydroartemisinic acid into artemisinin (see scheme) was shown to be an inexpensive and scalable process that can ensure a steady, affordable supply of artemisinin.

Continuous-Flow Synthesis of the Anti-Malaria Drug Artemisinin

  1. Dr. François Lévesque1 and
  2. Prof. Dr. Peter H. Seeberger1,2,*

Article first published online: 16 JAN 2012

DOI: 10.1002/anie.201107446………….http://onlinelibrary.wiley.com/doi/10.1002/anie.201107446/abstract

 

 

IMAGE………..http://phys.org/news/2013-08-chemists-fresh-approach-alloy-nanomaterials.html

 

 

 

3……………….

 

http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-9-265

 

 

IMAGE……..http://www.chemistryviews.org/details/ezine/1058453/Women_in_ChemistryA_European_Journal.html

 

 

4…………………….

 

http://www.rsc.org/chemistryworld/2014/09/antimalarial-flow-synthesis-commercialisation-artemisinin

 

 

 

 

5…………………………….

http://pipeline.corante.com/archives/2014/04/

 

http://www.chemistryviews.org/details/ezine/5753931/Liliana_Mammino_Research_and_Education_in_Sub-Saharan_Africa.html

 

 

 

6…………………………

http://pubs.rsc.org/en/content/articlelanding/2013/ob/c2ob27003j#!divAbstract

 http://www.amnh.org/learn-teach/young-naturalist-awards/winning-essays2/2013-winning-essays/optimizing-algae-biofuels-applied-natural-selection-to-improve-lipid-synthesis

 

 

 

7…………………..

 

http://onlinelibrary.wiley.com/doi/10.1002/anie.201305429/abstract

http://www.rsc.org/chemistryworld/2012/04/iron-lady

 

 

8………………………..

http://www-medchem.ch.cam.ac.uk/hot_topics.php

http://www.ollusa.edu/s/1190/ollu.aspx?pgid=2674

 

 

 

9…………………………

http://www.mdpi.com/1420-3049/19/7/9736

http://www.ed.ac.uk/alumni/services/news/news/femalechemists

 

 

 

10…………………

 

http://newdrugapprovals.org/2014/12/31/continuous-flow-synthesis-of-alpha-halo-ketones-building-blocks-for-anti-retroviral-agents/

main image

 

http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_26-9-2013-11-6-53

 

 

 

 

11……………………

 

http://pubs.rsc.org/en/content/articlehtml/2013/ob/c3ob41464g

 

http://emmittnlxe.soup.io/

 

 

 

 

12………………………..

http://pubs.rsc.org/en/content/articlelanding/2012/sc/c2sc21850j#!divAbstract

 

IMAGE……..http://evnewsreport.com/tag/battery/

 

 

 

 

13……………….

 

 

http://www.leygroup.ch.cam.ac.uk/research/continuous-flow-methodology/heterocycles-flow

IMAGE……….http://www.chemistryviews.org/details/ezine/1059875/Women_in_Chemistry__Interview_with_Zeinab_Shaaban_Abd_El-Ati_Abou_El-Naga.html

 

 

 

14………………..

 

http://www.sfu.ca/chemistry/groups/britton/publications.html

 

 

 

IMAGE……….http://www.greentechnolog.com/green_chemistry/

 

 

 

 

Share

A smarter way to find new drugs

 companies  Comments Off on A smarter way to find new drugs
Sep 232014
 

 

 

End to end solutions Big Data push to research In Green / shutterstock.com
End to end solutions Big Data push to research In Green / shutterstock.com

The pharma sector needs to embrace emerging technologies like Big Data analytics and cloud computing

What is the secret sauce of accelerating innovation when it comes to critical areas such as drug discovery, personalised medicines or simulated healthcare? Embracing continual innovation was always an imperative for the life sciences companies to stay relevant, and stay alive. This is not just confined to the new drug discovery team within the company, it spans the entire value chain of the innovation ecosystem. The question is whether enough is being done to drive R&D innovation in the pharmaceutical industry.

read all at

http://m.thehindubusinessline.com/opinion/a-smarter-way-to-find-new-drugs/article6435802.ece/

 

 

 

 

Share

USFDA grants Qualified Infectious Disease Product status to two Wockhardt drugs

 Uncategorized  Comments Off on USFDA grants Qualified Infectious Disease Product status to two Wockhardt drugs
Sep 012014
 
31 Aug, 2014,
NEW DELHI: Drug maker WockhardtBSE -1.83 % today said that two of its anti-infective drugs
have received Qualified Infectious Disease Product (QIDP) status from the US
health regulator.Two drugs – WCK 771 and WCK 2349 – have received QIDP
status, which allows fast-track review of the drug application by the US Food and Drug Administration (USFDA),
Wockhardt said in a statement.
Levonadifloxacin arginine salt, WCK 771
RN: 306748-89-0
 WCK 771………..S-(–)-9-fluoro-6,7-dihydro-8-(4-hydroxypiperidin-1-yl)-5-methyl-1-oxo-1H,5H-benzo[i,j] quinolizine-2-carboxylic acid L-arginine salt tetrahydrate
(-)-9-Fluoro-8-(4-hydroxypiperidin-1-yl)-5(S)-methyl-1-oxo-1,5,6,7-tetrahydropyrido[3,2,1-ij]quinoline-2-carboxylic acid L-arginine salt hydrate
 L-arginine salt of (S)-nadifloxacin
A chiral benzoquinolizine-2-carboxylic acid arginine salt active against vancomycin-resistant Staphylococcus aureus
J Med Chem 2005, 48(16): 5232
CN 102532131, WO 2005023805, WO 2002009758, WO 2001085095, WO 2000068229
WCK 2349
cas 948895-94-1  methane sulfonate
base..706809-20-3
8-[4-(L-Alanyloxy)piperidin-1-yl]-9-fluoro-5(S)-methyl-1-oxo-1,5,6,7-tetrahydropyrido[3,2,1-ij]quinoline-2-carboxylic acid methanesulfonate
WO 2000068229, WO 2002009758, WO 2007102061, WO 2008053295
Shetty, N.M.; Nandanwar, M.B.; Kamalavenkatesh, P.; et al.
WCK 2349: A novel fluoroquinolone (FQ) prodrug-13 week oral (PO) safety profile in cynomolgus monkeys
47th Intersci Conf Antimicrob Agents Chemother (ICAAC) (September 17-20, Chicago) 2007, Abst F1-2133a
keywords  USFDA, Qualified Infectious Disease Product status, Wockhardt,  drugs, WCK 771,  WCK 2349, QIDP
aChemical name: S-(–)-9-fluoro-6,7-dihydro-8-(4-hydroxypiperidin-1-yl)-5-methyl-1-oxo-1H,5H-benzo[i,j] quinolizine-2-carboxylic acid L-arginine salt tetrahydrate. bChemical name: S-(–)-1-cyclopropyl-6-fluoro-8-methoxy-7-(4-amino-3, 3-dimethylpiperidin-1-yl)-1,4 dihydro-4-oxo-quinoline-3-carboxylic acid hydrochloride monohydrate. cChemical name: R-(+)-1-cyclopropyl-6-fluoro-8-methoxy-7-(4-amino-3,3-dimethylpiperidin-1-yl)-1,4 dihydro-4-oxo-quinoline-3-carboxylic acid hydrochloride monohydrate.
Share

Simple new way to clean traces of impurities from drug ingredients

 drugs  Comments Off on Simple new way to clean traces of impurities from drug ingredients
Jun 122014
 

 

Scientists are reporting development of a simple new procedure for removing almost 98 percent of an important impurity that can contaminate prescription drugs and potentially increase the risk for adverse health effects in patients.

Their report appears in ACS’ journal Organic Process Research & Development.

Ecevit Yilmaz and colleagues note that contamination of medications with so-called “genotoxic” impurities (GTIs) have resulted in several major recent drug recalls. GTIs may be ingredients used to make drugs, or they may be formed during production of drugs, and can remain in the final product in minute amounts. The presence of one GTI in the anti-viral medication Viracept distributed in the European Union forced a recall in 2007. With GTIs an ongoing serious concern for the pharmaceutical industry, the scientists sought a better way to remove an important GTI called acrolein.

read at

http://www.sciencedaily.com/releases/2012/06/120620113336.htm

 

Share

Iloprost (ciloprost) used to treat a serious heart and lung disorder called pulmonary arterial hypertension

 orphan status  Comments Off on Iloprost (ciloprost) used to treat a serious heart and lung disorder called pulmonary arterial hypertension
Jan 132014
 

http://chem.sis.nlm.nih.gov/chemidplus/RenderImage?maxscale=30&width=300&height=300&superlistid=0078919138

Iloprost (ciloprost)

MF C22H32O4
Formula Wgt 360.5

6,9ALPHA-METHYLENE-11ALPHA,15S-DIHYDROXY-16-METHYL-PROSTA-5E,13E-DIEN-18-YN-1-OIC ACID

6,​9α-​methylene-​11α,​15S-​dihydroxy-​16-​methyl-​prosta-​5E,​13E-​dien-​18-​yn-​1-​oic acid

 

Iloprost Molecule

ILOPROST (Ventavis®) is used to treat a serious heart and lung disorder called pulmonary arterial hypertension. While iloprost inhalation solution will not cure this disorder, it is designed to improve symptoms and the quality of life. Generic iloprost inhalation solution is not yet available.

Iloprost is a second generation structural analog of prostacyclin (PGI) with about ten-fold greater potency than the first generation stable analogs, typified by carbaprostacyclin.1 Iloprost binds with equal affinity to the human recombinant IP and EP1 receptors with a Ki of 11 nM.2Iloprost constricts the isolated guinea pig ilium and fundus circular smooth muscle (an EP1 receptor preparation) as strongly as prostaglandin E2 (PGE2) itself.3 Iloprost inhibits the ADP, thrombin, and collagen-induced aggregation of human platelets with an ED50 of about 13 nM.1 In whole animals, iloprost acts as a vasodilator, hypotensive, antidiuretic, and prolongs bleeding time.4 It has been evaluated in several human clinical studies as a treatment for idiopathic pulmonary hypertension.5,6 In these studies, an aerosolized dose of 30 µg/day was effective, and doses as high as 150 µg/day for up to a year were well tolerated.

73873-87-7 CAS NO

78919-13-8 PHENACYL ESTER

Launched – 1992 bayer

Ilomedin®, Ventavis™

Iloprost.pngiloprost

An eicosanoid, derived from the cyclooxygenase pathway of arachidonic acid metabolism. It is a stable and synthetic analog of EPOPROSTENOL, but with a longer half-life than the parent compound. Its actions are similar to prostacyclin. Iloprost produces vasodilation and inhibits platelet aggregation.

BAY-q-6256 E-1030 SH-401 ZK-36374

  • BAY Q6256
  • Ciloprost
  • Iloprost
  • Iloprostum
  • Iloprostum [Latin]
  • UNII-AHG2128QW6
  • UNII-JED5K35YGL
  • Ventavis
  • ZK 00036374
  • ZK 36374

Endoprost Ilomedin Ilomédine Ventavis Iloprost is a synthetic prostacyclin analog discovered and developed by Schering AG and Berlex which has been available for more than ten years as therapy for peripheral arterial occlusive disease (PAOD), including Raynaud’s phenomenon and Buerger’s disease.

Iloprost improves blood flow, relieves the pain associated with circulatory disturbances and improves the healing of ulcers, which can develop as a result of poor arterial blood flow. Iloprost also produces vasodilatation of the pulmonary arterial bed, with subsequent significant improvement in pulmonary artery pressure, pulmonary vascular resistance and cardiac output, as well as mixed venous oxygen saturation. In 2003, Schering AG received approval in the E.U. for an inhaled formulation of iloprost (Ventavis[R]) for the treatment of primary pulmonary hypertension and the following year, the product was launched in Germany and the U.K.

Introduction on the U.S. market took place in March 2005 by CoTherix for the same indication in patients with NYHA Class III or IV symptoms. Iloprost is also available for the treatment of pulmonary hypertension and peripheral vascular disease. CoTherix had been developing a dry powder for potential use in the treatment of pulmonary hypertension; however, no recent development has been reported for this research. In Japan, phase III clinical trials are ongoing for the treatment of pulmonary arterial hypertension. In 2003, CoTherix licensed exclusive rights from Schering AG to market iloprost in the U.S. for primary pulmonary hypertension while Schering AG retained rights to the product outside the U.S. In April 2005, CoTherix established a collaborative research and development agreement with Quadrant to develop an extended-release formulation of iloprost inhalation solution. Iloprost was designated as an orphan medicinal product for the treatment of pulmonary hypertension in December 2000 by the EMEA and will fall under orphan drug protection until 2013.

The FDA has assigned to iloprost several orphan drug designations. In 1989, iloprost solution for infusion was granted orphan drug designation for the treatment of Raynaud’s phenomenon secondary to systemic sclerosis followed by another orphan drug designation in 1990 for iloprost solution for injection for the treatment of heparin-associated thrombocytopenia. In 2004, an additional orphan drug designation for iloprost inhalation solution for the treatment of pulmonary arterial hypertension was assigned.

The status has also been assigned in the E.U. for this indication. In 2012, orphan drug designation was assigned in the U.S. for the treatment of purpura fulminans in combination with eptifibatide and for the treatment of pulmonary arterial hypertension. In 2007, Cotherix was acquired by Actelion.

ILOPROST

 

 

iloprost phenacyl ester

Ventavis (TN), Iloprost phenacyl ester, Iloprost-PE, Iloprost (INN), CHEMBL138694, CHEMBL236025, AC1O6009, DAP000273, CID5311181

Molecular Formula: C30H38O5   Molecular Weight: 478.61972

2-oxo-2-phenylethyl 5-[(2Z)-5-hydroxy-4-[(1E)-3-hydroxy-4-methyloct-1-en-6-yn-1-yl]-octahydropentalen-2-ylidene]pentanoate

IMPORTANT PUBLICATIONS

Ciloprost Drugs Fut 1981, 6(11): 676

A carbohydrate approach for the formal total synthesis of the prostacyclin analogue (16S)-iloprost Tetrahedron Asymmetry 2012, 23(5): 388

Angewandte Chemie, 1981 ,  vol. 93,   12  pg. 1080 – 1081

Tetrahedron Letters, 1992 ,  vol. 33,   52  pg. 8055 – 8056

Helvetica Chimica Acta, 1986 ,  vol. 69,  7  pg. 1718 – 1727

Journal of Medicinal Chemistry, 1986 ,  vol. 29,  3  pg. 313 – 315

US5286494 A1

US 4474802

 US 2013253049

uS 2013184295

WO 1992014438

WO 1993007876

WO 1993015739

WO 1994008584

WO 2013040068

WO 2012174407

WO 2011047048

EP0011591A1 * Oct 18, 1979 May 28, 1980 Schering Aktiengesellschaft Prostane derivatives, their production and pharmaceutical compositions containing them
EP0084856A1 * Jan 19, 1983 Aug 3, 1983 Toray Industries, Inc. 5,6,7-Trinor-4, 8-inter-m-phenylene prostaglandin I2 derivatives
EP0099538A1 * Jul 11, 1983 Feb 1, 1984 Schering Aktiengesellschaft Carbacyclines, process for their preparation and their use as medicines

……………………………………

  •  5,6,7-trinor-4,8-inter-m-phenylene prostaglandin 12derivatives.
  • Prostaglandin I2, hereinafter referred to as PGI2, of

    Figure imgb0001

    was first found by J.R. Vane et.al. in 1976 and is biosynthe- sized from arachidonic acid via endoperoxide(PGH2 or PGG2) in the vascular wall. PGI2 is well known to show potent activity to inhibit platelet aggregation and to dilate peripheral blood vessels(C & EN, Dec. 20, 1976, page 17 and S. Moncade et al., Nature, 263,633(1976)).

  • [0003]
    Because of the unstable exo-enolether structure thereof, PGI2 is extremely unstable even in a neutral aqueous solution and is readily converted to 6-oxo-PGF which is almost physiologically inactive. Such instability of PGI2 is a big obstacle to its use as a drug. Furthermore, PGI2 is unstable in vivo as well and shows only short duration of action.
  • The compounds of the present invention are novel PGI2 derivatives in which the exo-enolether moiety characteristic of PGI2 is transformed into “inter-m-phenylene” moiety. In this sense the compounds may be regarded as analogs of PGI2.
  • The compounds of the present invention feature much improved stability in vitro as well as in vivo in comparison with PGI2. The compounds are highly stable even in an aqueous solution and show long duration of action in vivo. Further, the compounds have advantages over PGI2 for pharmaceutical application because they exhibit more selective physiological actions than PGI2, which has multifarious, inseperable biological activities.
  • Some prostaglandin I2 derivatives which have 5,6,7-tri- nor-4,8-inter-m-phenylene structure have already been described in publication by some of the present authors. (Kiyotaka Ohno, Hisao Nishiyama and Shintaro Nishio, U.S.P. 4,301,164 (1981)). But, the compounds of the present invention, which feature the presence of alkynyl side chain, have more potent physiological activities as well as decreased side effects than the already disclosed compounds analogous to those of the present invention.
  • It is an object of this invention to provide novel prostaglandin I2derivatives which are stable and possess platelet aggregation-inhibiting, hypotensive, anti-ulcer and other activities.

 

  • Figure imgb0004

    is named as 16-methyl-18,19-tetradehydro-5,6,7-trinor-4,8-inter-m-phenylene PGI2.

  • Alternatively, the compound of the formula (II) may be named as a derivative of butyric acid by the more formal nomenclature. In such a case, the condensed ring moiety is named after the basical structure of 1H-cyclopenta[b]benzofuran of the following formula:

    Figure imgb0005

    The term “synthetic prostacyclins” as used herein can refer to any prostacyclin that can be prepared via synthetic organic chemistry, including those prostacyclins that are also naturally occurring, such as Prostacyclin (PGI2):

     

    Figure imgf000025_0001

    which is also known as Epopreostenol.

    Thus, examples of synthetic prostacyclins include, but are not limited to: Prosta

     

    Figure imgf000025_0002

    lloprost, which has the structure:

     

    Figure imgf000025_0003

    Trepro inil (also known as Rumodolin), which has the structure:

     

    Figure imgf000025_0004

    Beraprost, which has the structure:

     

    Figure imgf000026_0001

    as well as the esters, stereoisomers, and salts thereof, or other analogues or derivatives of the recited synthetic prostacyclins, such as compounds comprising other aliphatic linker groups linking the carboxylic acid group to the cyclic components of the synthetic prostacyclins, compounds containing additional alkene and/or alkyne bonds, and/or compounds containing additional substituents on the cyclic components of the synthetic prostacyclins.

    Figure imgf000031_0001

     iloprost, in contrast to PGI.sub.2 a stable prostacyclin derivative, has been known since 1980 by European patent application EP 11591, no other prostacyclin derivative has previously been tested in this indication. It is therefore reasonable to assume that a spontaneous healing is involved in the published case.

    It has now been found, surprisingly, that iloprost is effective in the case of cerebral malaria.

    For salt formation of iloprost, inorganic and organic bases are suitable, as they are known to one skilled in the art for the formation of physiologically compatible salts. For example, there can be mentioned: alkali hydroxides, such as sodium and potassium hydroxide, alkaline-earth hydroxides, such as calcium hydroxide, ammonia, amines, such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine, morpholine, tris-(hydroxymethyl)-methylamine, etc.

    The β-cyclodextrin clathrate formation takes place according to EP 259468.

    The production of iloprost is described in detail in EP 11591.

    • Nileprost iloprost, and a process for preparing these compositions.
    • From EP 11 591 already carbacyclin derivatives of the cytoprotective effect on the gastric and intestinal mucosa, and the myocardial cytoprotection using carbacyclin derivatives is known.
    • It has now been found that iloprost (I) and Nileprost (II)

      Figure imgb0001

      and their salts with physiologically acceptable bases and cytoprotective effect in the kidney.

    • Forming salts of iloprost and Nileprost inorganic and organic bases are suitable, as are known to those skilled in the formation of physiologically compatible salts known. Examples which may be mentioned are: alkali metal hydroxides, such as sodium and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, ammonia, amines, such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine, morpholine, tris (hydroxymethyl) methylamine, etc.
    • The production of iloprost and is described in detail in EP Nileprost 2234 and EP 11591.
    ………………..
    J. Med. Chem., 1986, 29 (3), pp 313–315
    DOI: 10.1021/jm00153a001

see paper

………………………………..
The formal total synthesis of the synthetic and stable analogue of prostacyclin, (16S) iloprost is described via a convergent synthesis starting from readily available d-glucose. Julia olefination and the aldol reaction are the key steps involved in the synthesis.
Full-size image (18 K)
……………………………………
  • Used as the starting material for the method described above ketone of general formula II can be prepared by reacting an alcohol of the formula IV

    Figure imgb0006

    (EJCorey et al., J. Amer. Chem. 93, 1490 (1971)) transformed with dihydropyran in the presence of catalytic amounts of p-toluenesulfonic acid in the tetrahydropyranyl ether V.

    Figure imgb0007
  • [0026]
    Lactone V with Diisobatylauminiumnydrid reduced at -70 ° C to the lactol VI, which is converted by Wittiereaktion Triphenylphosphoniummethylen with the olefin VII. After conversion to the tosylate with p-toluenesulfonyl chloride in the presence of pyridine is obtained by reaction with potassium nitrite in the dimethylsulfoxide 9SS-configured alcohol IX, which is converted with p-toluenesulfonyl chloride in the presence of pyridine in the tosylate X. Reaction with Malonsäurediäthylester in presence of potassium tert-butoxide gives the diester XI, which is converted by decarbalkoxylation with sodium cyanide in dimethyl sulfoxide in the ester XII.

    Figure imgb0008
  • [0027]
    Oxidative cleavage of the double bond in the compound XII with Hatrium p j o dat it out in the presence of catalytic amounts of osmium tetroxide to give the aldehyde XIII, which is oxidized with Jones reagent to the acid XIV which is then esterified with diazomethane to the compound XV. By Dieckmann condensation of XV with potassium tert-butoxide in tetrahydrofuran is obtained a mixture of isomers of the ketocarboxylic acid ester XVI and XVII, which by means of a decarbalkoxylation with 1,4-diazabicyclo [2,2,2] octane in xylene converted into ketone XVIII as the only reaction product is.

    Figure imgb0009
  • [0028]
    The removal of the Tetrahydropyranylätherschutzgruppe delivers the alcohol XIX, which is esterified with benzoyl chloride in the presence of pyridine to give the ester XX.

    Figure imgb0010
  • [0029]
    Benzyläthers hydrogenolytic cleavage of a catalytic amount of acid gives the alcohol XXI, which is according to ketalization compound XXII oxidized with Collins reagent to aldehyde XXIII.
  • [0030]
    This aldehyde XXIV with a phosphonate of the general formula

    Figure imgb0011

    wherein D, E and R 2 have the meanings given above is reacted in a Olefinicrungsreaktion to a ketone of the formula XXV.

    Figure imgb0012
  • [0031]
    After reduction of the 15-keto group with zinc borohydride or sodium borohydride or reaction with alkylmagnesium bromide or alkyllithium and. Epimerentrennung obtain the 15α-alcohols XXVI (PG numbering).

    Figure imgb0013
  • [0032]
    After hydrolysis of the ester group, for example with potassium carbonate in methanol and ketal cleavage with aqueous acetic acid yields the ketone of the formula XXVII,

    Figure imgb0014
……………………………………
ANTHONY MELVIN CRASTO

THANKS AND REGARD’S

DR ANTHONY MELVIN CRASTO Ph.D GLENMARK SCIENTIST , NAVIMUMBAI, INDIA

did you feel happy, a head to toe paralysed man’s soul in action for you round the clock need help, email or call me

MOBILE-+91 9323115463
web link

I was  paralysed in dec2007, Posts dedicated to my family, my organisation Glenmark, Your readership keeps me going and brings smiles to my family

Share

SURAMIN HEXASODIUM

 Uncategorized  Comments Off on SURAMIN HEXASODIUM
Jan 082014
 

 

suramin

A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties.

A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties. Suramin is manufactured by Bayer in Germany as Germanin®.

Also known as: Naphuride, Germanin, Naganol, Belganyl, Fourneau, Farma, Antrypol, Suramine, Naganin

8,8′-{Carbonylbis[imino-3,1-phenylenecarbonylimino(4-methyl-3,1-phenylene)carbonylimino]}di(1,3,5-naphthalenetrisulfonic acid) …FREE FORM

8,8′-[Ureylenebis[m-phenylenecarbonylimino(4-methyl-m-phenylene)carbonylimino]]di(1,3,5-naphthalenetrisulfonic acid) hexasodium salt

CAS  145-63-1 FREE FORM

129-46-4 of hexa sodium

LAUNCHED 1940 BAYER

Formula C51H40N6O23S6 
Mol. mass 1297.29

The molecular formula of suramin is C51H34N6O23S6. It is a symmetric molecule in the center of which lies ureaNH-CO-NH. Suramin contains eightbenzene rings, four of which are fused in pairs (naphthalene), four amide groups in addition to the one of urea and six sulfonate groups. When given as drug it usually contains six sodium ions that form a salt with the six sulfonate groups.

Suramin is a drug developed by Oskar Dressel and Richard Kothe of BayerGermany in 1916, and is still sold by Bayer under the brand nameGermanin.

Suramin sodium is a heparanase inhibitor that was first launched in 1940 by Bayer under the brand name Antrypol for the treatment of helminthic infection. It was later launched by Bayer for the treatment of trypanosomiasis (African sleeping sickness).

More recently, the product has entered early clinical development at Ohio State University for the treatment of platinum-pretreated patients with stage IIIB/IV non-small cell lung cancer, in combination with docetaxel or gemcitabine.

The National Cancer Institute (NCI) is conducting phase II clinical studies for the treatment of glioblastoma multiforme and for the treatment of adrenocortical carcinoma.

According to the National Cancer Institute there are no active clinical trials (as of April 1, 2008). Completed and closed clinical trials are listed here:[1]

In addition to Germanin, the National Cancer Institute also lists the following “Foreign brand names”: 309 F or 309 Fourneau,[1] Bayer 205, Moranyl, Naganin, Naganine.

It is used for treatment of human sleeping sickness caused by trypanosomes.[2]

It has been used in the treatment of onchocerciasis.[3]

It has been investigated as treatment for prostate cancer.[4]

Also, suramin as treatment for autism is being evaluated. [5]

Suramin is administered by a single weekly intravenous injection for six weeks. The dose per injection is 1 g.

The most frequent adverse reactions are nausea and vomiting. About 90% of patients will get an urticarial rash that disappears in a few days without needing to stop treatment. There is a greater than 50% chance of adrenal cortical damage, but only a smaller proportion will require lifelongcorticosteroid replacement. It is common for patients to get a tingling or crawling sensation of the skin with suramin. Suramin will cause clouding of the urine which is harmless: patients should be warned of this to avoid them becoming alarmed.

Kidney damage and exfoliative dermatitis occur less commonly.

Suramin has been applied clinically to HIV/AIDS patients resulting in a significant number of fatal occurrences and as a result the application of this molecule was abandoned for this condition. http://www.ncbi.nlm.nih.gov/pubmed/3548350

Suramin is also used in research as a broad-spectrum antagonist of P2 receptors[6][7] and agonist of Ryanodine receptors.[8]

ChemSpider 2D Image | 8,8'-{Carbonylbis[imino-3,1-phenylenecarbonylimino(4-methyl-3,1-phenylene)carbonylimino]}di(1,3,5-naphthalenetrisulfonic acid) | C51H40N6O23S6suramin

Its effect on telomerase has been investigated.[9]

It may have some activity against RNA viruses.[10]

In addition to antagonism of P2 receptors, Suramin inhibits the acitivation of heterotrimeric G proteins in a variety of other GPCRs with varying potency. It prevents the association of heteromeric G proteins and therefore the receptors Guanine exchange functionality (GEF). With this blockade the GDP will not release from the Gα subunit so it can not be replaced by a GTP and become activated. This has the effect of blocking downstream G protein mediated signaling of various GPCR proteins including Rhodopsin, the A1 Adenosine receptor, and the D2 dopamine receptor.[11]

A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties. Suramin is manufactured by Bayer in Germany as Germanin®.

8-1-2012
InCl3-catalysed synthesis of 2-aryl quinazolin-4(3H)-ones and 5-aryl pyrazolo[4,3-d]pyrimidin-7(6H)-ones and their evaluation as potential anticancer agents.
Bioorganic & medicinal chemistry letters
9-1-2012
Identification of a sirtuin 3 inhibitor that displays selectivity over sirtuin 1 and 2.
European journal of medicinal chemistry
1-1-2013
Inhibition of the human deacylase Sirtuin 5 by the indole GW5074.
Bioorganic & medicinal chemistry letters
5-9-2013
Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3.
Journal of medicinal chemistry
  1.  The formula of suramin was kept secret by Bayer for commercial reasons. But it was elucidated and published in 1924 by Fourneau and his team of the Pasteur Institute, and it is only on this date that its exact chemical composition was known. (E. Fourneau, J. and Th. Tréfouël and J. Vallée (1924). “Sur une nouvelle série de médicaments trypanocides”, C. R. Séances Acad. Sci. 178: 675.)
  2. Darsaud A, Chevrier C, Bourdon L, Dumas M, Buguet A, Bouteille B (January 2004). “Megazol combined with suramin improves a new diagnosis index of the early meningo-encephalitic phase of experimental African trypanosomiasis”Trop. Med. Int. Health 9 (1): 83–91.doi:10.1046/j.1365-3156.2003.01154.xPMID 14728611.
  3.  Anderson J, Fuglsang H (July 1978). “Further studies on the treatment of ocular onchocerciasis with diethylcarbamazine and suramin”Br J Ophthalmol 62 (7): 450–7.doi:10.1136/bjo.62.7.450PMC 1043255PMID 678497.
  4.  Ahles TA, Herndon JE, Small EJ, et al. (November 2004). “Quality of life impact of three different doses of suramin in patients with metastatic hormone-refractory prostate carcinoma: results of Intergroup O159/Cancer and Leukemia Group B 9480”. Cancer 101 (10): 2202–8.doi:10.1002/cncr.20655PMID 15484217.
  5.  http://medicalxpress.com/news/2013-03-drug-treatment-autism-symptoms-mouse.html
  6.  Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. (september 2006). “International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy”. Pharmacol Rev. 58 (3): 281–341.doi:10.1124/pr.58.3.3PMID 16968944.
  7.  Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Séguéla P, Voigt M, Humphrey PP. (march 2001). “International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits”. Pharmacol Rev. 53 (1): 107–118.PMID 11171941.
  8.  Wolner I, Kassack MU, Ullmann H, Karel A, Hohenegger M (October 2005). “Use-dependent inhibition of the skeletal muscle ryanodine receptor by the suramin analogue NF676”Br. J. Pharmacol. 146 (4): 525–33. doi:10.1038/sj.bjp.0706359PMC 1751178.PMID 16056233.
  9.  Erguven M, Akev N, Ozdemir A, Karabulut E, Bilir A (August 2008). “The inhibitory effect of suramin on telomerase activity and spheroid growth of C6 glioma cells”Med. Sci. Monit. 14(8): BR165–73. PMID 18667993.
  10.  Mastrangelo E, Pezzullo M, Tarantino D, Petazzi R, Germani F, Kramer D, Robel I, Rohayem J, Bolognesi M, Milani M (2012) Structure-based inhibition of norovirus RNA-dependent RNA-polymerases. J Mol Biol
  11.  Beindl W, Mitterauer T, Hohenegger M, Ijzerman AP, Nanoff C, Freissmuth M. (August 1996).“Inhibition of receptor/G protein coupling by suramin analogues”ol. Pharmacology. 50 (2): 415–23. PMID 8700151.
  12. Drugs Fut 1986, 11(10): 860
  13. WO 2012159107
  14. WO 2012087336
  15. US 2011257109
  16. WO 2009022897
  17. WO 2009020613
  18. WO 2008094027
  19.   EP 0486809
  20. US 5158940
  21. US 5173509
  22. WO 1993007864
  23. WO 1994008574

 

SURAMIN

Enterovirus-71 (EV71) is one of the major causative reagents for hand-foot-and-mouth disease. In particular, EV71 causes severe central nervous system infections and leads to numerous dead cases. Although several inactivated whole-virus vaccines have entered in clinical trials, no antiviral agent has been provided for clinical therapy. In the present work, we screened our compound library and identified that suramin, which has been clinically used to treat variable diseases, could inhibit EV71 proliferation with an IC50 value of 40μM. We further revealed that suramin could block the attachment of EV71 to host cells to regulate the early stage of EV71 infection, as well as affected other steps of EV71 life cycle. Our results are helpful to understand the mechanism for EV71 life cycle and provide a potential for the usage of an approved drug, suramin, as the antiviral against EV71 infection.

 

  • Suramin Hexasodium
  • 129-46-4

Synonyms

  • 309 F
  • Antrypol
  • BAY 205
  • Bayer 205
  • CI-1003
  • EINECS 204-949-3
  • Fourneau 309
  • Germanin
  • Moranyl
  • Naganin
  • Naganine
  • Naganinum
  • Naganol
  • Naphuride sodium
  • NF060
  • NSC 34936
  • SK 24728
  • Sodium suramin
  • Suramin Hexasodium
  • Suramin sodium
  • Suramina sodica
  • Suramina sodica [INN-Spanish]
  • Suramine sodique
  • Suramine sodique [INN-French]
  • Suramine sodium
  • Suraminum natricum
  • Suraminum natricum [INN-Latin]
  • UNII-89521262IH

 

Suramin Sodium, is an anticancer agent with a wide variety of activities.

Recently suramin was shown to inhibit FSH binding to its receptor (Daugherty, R. L.; Cockett, A. T. K.; Schoen, S. R. and Sluss, P. M. “Suramin inhibits gonadotropon action in rat testis: implications for treatment of advanced prostate cancer” J. Urol. 1992, 147, 727-732).

This activity causes, at least in part, the decrease in testosterone production seen in rats and humans that were administered suramin(Danesi, R.; La Rocca, R. V.; Cooper, M. R.; Ricciardi, M. P.; Pellegrini, A.; Soldani, P.; Kragel, P. J.; Paparelli, A.; Del Tacca, M.; Myers, C. E, “Clinical and experimental evidence of inhibition of testosterone production by suramin.” J. Clin. Endocrinol. Metab. 1996, 81, 2238-2246).

Suramin is the only non-peptidic small molecule that has been reported to be an FSH receptor binding antagonist.

Figure US06200963-20010313-C00003

Suramin is 8,8′ – (carbonylbis(imino-3,1-phenylenecarbonylimino (4-methyl-3,1-phenylene) carbonylimino)) bis-1,3 ,5-naphthalenetrisulfonic acid (GB Patent No. 224849). This polyanionic compound has been used for many decades as a prophylactic and therapeutic agent for try- panosomiasis. It was subsequently shown that suramin is able to block the activity of a variety of proteins like cellular and viral enzymes and growth factors (Mitsuya, M. et al. Science 226 : 172 (1984), Hosang, M. J. Cell. Biochem. 29 : 265 (1985), De Clercq, E. Cancer Lett. 8 : 9 (1979)).

 

5-32-1977
Complement inhibitors
5-25-1977
Aromatic amidines as antiviral agents in animals
5-4-1977
Complement inhibitors
5-4-1977
Complement inhibitors
4-27-1977
Cyclodextrin sulfate salts as complement inhibitors
4-20-1977
Ureylenebis methyl-phenylene-carbonyl-bis-dihydro-2-oxo-naphthoxazine disultonic acids
3-30-1977
Water treatment for controlling the growth of algae employing biguanides
3-2-1977
Isoxazole substituted nitroimidazoles
2-16-1977
Amidophenyl-azo-naphthalenesulfonic complement inhibitors and method of use thereof
2-9-1977
Complement inhibitors
2-10-2011
MODULATION OF HUMAN MAST CELL ACTIVATION MODULATION OF HUMAN MAST CELL ACTIVATION
11-18-2010
Admixtures for inorganic binders based on a hydrogenated disaccharide, inorganic binders containing these admixtures and process for their preparation Admixtures for inorganic binders based on a hydrogenated disaccharide, inorganic binders containing these admixtures and process for their preparation
10-28-2010
THERAPEUTIC INHIBITORS OF VASCULAR SMOOTH MUSCLE CELLS
9-9-2010
APPARATUS FOR USING ELECTROPORATION MEDIATED DELIVERY OF DRUGS AND GENES
4-8-2010
PREPARATION AND USE OF SULFATED OLIGOSACCHARIDES
10-29-2009
THERAPEUTIC INHIBITOR OF VASCULAR SMOOTH MUSCLE CELLS THERAPEUTIC INHIBITOR OF VASCULAR SMOOTH MUSCLE CELLS
8-20-2009
METHOD OF MAKING MINERAL FIBRES METHOD OF MAKING MINERAL FIBRES
6-25-2009
OXYGEN-FUEL BOOST REFORMER PROCESS AND APPARATUS
4-23-2009
METHODS OF TREATING VASCULAR DISEASE WITH TNF ANTAGONISTS METHODS OF TREATING VASCULAR DISEASE WITH TNF ANTAGONISTS
3-26-2009
COPOLYMER COMPOSITIONS FOR ORAL DELIVERY
5-3-1978
1,3,5- Or 1,3,6-naphthalenetriyltris(sulfonylimino)aryl acids and salts
3-22-1978
Nitroimidazoles
2-15-1978
Treatment of rheumatoid arthritis and related diseases
1-4-1978
AROMATIC AMIDINES AS ANTIVIRAL AGENTS IN ANIMALS
1-4-1978
Malto-dextrin poly(H-)sulfates
12-14-1977
Disazo compounds useful as complement inhibitors
12-7-1977
Bis-substituted naphthalene-azo phenyleneazo-stilbene-disulfonic and naphthalene-sulfonic acid
9-28-1977
UREIDOPHENYLENEBIS(CARBONYLIMINO)DINAPHTHALENETRISULFONIC ACID COMPOUNDS
9-21-1977
Substituted bisnaphthylazo diphenyl ureido complement inhibitors
9-7-1977
Substituted-hydroxy-naphthalenedisulfonic acid compounds

 

1-12-1977
Complement inhibitors
12-22-1976
Complement inhibitors
10-13-1976
Complement inhibitors

 

EP0183352A2 * Sep 27, 1985 Jun 4, 1986 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Use of suramin for clinical treatment of infection with any of the members of the family of human-t-cell leukemia (htvl) viruses including lymphadenopathy virus (lav)
EP0205077A2 * Jun 3, 1986 Dec 17, 1986 Bayer Ag Suramin sodium for use as an immunostimulant

 

EP0515523A1 * Feb 13, 1991 Dec 2, 1992 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Use of suramin to treat rheumatologic diseases
EP0755254A1 * Mar 24, 1995 Jan 29, 1997 The Trustees Of The University Of Pennsylvania Prevention and treatment of ischemia-reperfusion and endotoxin-related injury using adenosine and purino receptor antagonists
EP1460087A1 * Feb 17, 1997 Sep 22, 2004 The Kennedy Institute Of Rheumatology Methods of treating vascular disease with TNF antagonists
EP1940376A2 * Oct 3, 2006 Jul 9, 2008 Rottapharm S.P.A. Use of neboglamine in the treatment of toxicodependency
EP1945204A2 * Oct 27, 2006 Jul 23, 2008 Brane Discovery S.R.L. V-atpase inhibitors for use in the treatment of septic shock
US5453444 * Oct 6, 1994 Sep 26, 1995 Otsuka Pharmaceutical Co., Ltd. Method to mitigate or eliminate weight loss
US5534539 * Jun 12, 1995 Jul 9, 1996 Farmitalia Carlo Erba S.R.L. Biologically active ureido derivatives useful as anit-metastic agenst
US5596105 * Jan 13, 1995 Jan 21, 1997 Farmitalia Carlo Erba S.R.L. Therapeutically active naphthalenesulfonic pyrrolecarboxamido derivatives
US7476693 Mar 26, 2003 Jan 13, 2009 Eastern Virginia Medical School Suramin and derivatives thereof as topical microbicide and contraceptive
US7608262 Feb 16, 1996 Oct 27, 2009 The Kennedy Institute Of Rheumatology Methods of preventing or treating thrombosis with tumor necrosis factor antagonists
US8552064 Dec 19, 2008 Oct 8, 2013 Eastern Virginia Medical School Suramin and derivatives thereof as topical microbicide and contraceptive
WO1994008574A1 * Oct 12, 1993 Apr 28, 1994 Otsuka America Pharmaceutical Treatment of cachexia and inhibition of il-6 activity
WO1994010990A1 * Nov 12, 1993 May 26, 1994 British Bio Technology Inhibition of tnf production
WO1997030088A2 * Feb 17, 1997 Aug 21, 1997 Kennedy Inst Of Rheumatology Methods of treating vascular disease with tnf antagonists
WO2004113920A1 * Jun 18, 2004 Dec 29, 2004 Babon Jeff James Screening method for substances binding to merozoite surface protein-1/42
WO2008138943A2 * May 14, 2008 Nov 20, 2008 Mara Galli Prophylactic and therapeutic use of sirtuin inhibitors in tnf-alpha mediated pathologies
WO2009137471A2 * May 5, 2009 Nov 12, 2009 University Of Miami Azo dye related small molecule modulators of protein-protein interactions
WO2010016628A1 * Jul 10, 2009 Feb 11, 2010 Sammy Opiyo Conjugated suramin amino compounds for medical conditions
WO2012159107A1 * May 21, 2012 Nov 22, 2012 Rhode Island Hospital Inhibition of renal fibrosis

 

 

 

ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

GLENMARK SCIENTIST , NAVIMUMBAI, INDIA

did you feel happy, a head to toe paralysed man’s soul in action for you round the clock

need help, email or call me

MOBILE-+91 9323115463
web link

I was  paralysed in dec2007, Posts dedicated to my family, my organisation Glenmark, Your readership keeps me going and brings smiles to my family

 

 

Share

Portola gets FDA breakthrough therapy status for andexanet alfa

 breakthrough designation  Comments Off on Portola gets FDA breakthrough therapy status for andexanet alfa
Nov 282013
 

andexanet alfa

Portola gets FDA breakthrough therapy status for andexanet alfa
US-based biopharmaceutical firm Portola Pharmaceuticals has received breakthrough therapy designation from the US Food and Drug Administration (FDA) for its investigational Factor Xa inhibitor antidote, ‘andexanet alfa’.

read all at

http://www.pharmaceutical-technology.com/news/newsportola-gets-fda-breakthrough-therapy-status-for-andexanet-alfa?WT.mc_id=DN_News

Andexanet alfa (PRT4445*): FXa Inhibitor Antidote

Description

  • Recombinant Factor Xa inhibitor antidote
  • Portola has worldwide rights to develop and commercialize andexanet alfa.

Key Characteristics

  • Acts as a Factor Xa decoy that binds and sequesters direct Factor Xa inhibitors in the blood. Once bound to andexanet alfa, the Factor Xa inhibitors are unable to bind to and inhibit native Factor Xa. The native Factor Xa is then available to participate in the coagulation process and restore hemostasis (normal clotting).
  • Preclinical and Phase 1 studies suggest that andexanet alfa has the potential to be a universal reversal agent for all Factor Xa inhibitors.

Potential Indications

  • Reverse Factor Xa inhibitor anticoagulant activity in patients treated with a Factor Xa inhibitor who suffer an uncontrolled bleeding episode or need to undergo emergency surgery

Clinical Development

Phase 2 proof-of-concept studies are underway or planned. These randomized, double-blind, placebo-controlled studies are designed to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of andexanet alfa after dosing of a direct/indirect Factor Xa inhibitor in healthy volunteers.

  • Positive pharmacodynamic and safety data from a Phase 2 study evaluating andexanet alfa with Eliquis® (apixaban) were presented in an oral session at the XXIV Congress of the International Society on Thrombosis and Haemostasis in Amsterdam in July 2013. This study is ongoing to evaluate the administration of andexanet alfa bolus plus extended-duration infusion.
  • A Phase 2 study evaluating andexanet alfa and XARELTO® (rivaroxaban) is ongoing.
  • Separate studies evaluating andexanet alfa with Lovenox® (enoxaparin), Lixiana® (edoxaban) and betrixaban are planned.

 

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: