AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER
Jul 142017
 

 

DOI: 10.1039/C7CY01088E, Paper
Godfred D. Fianu, Kyle C. Schipper, Robert A. Flowers II
Catalytic amounts of titanocene(III) borohydride, generated under mild conditions from commercially available titanocene dichloride, in concert with a stoichiometric hydride source is shown to effectively reduce aldehydes and ketones to their respective alcohols in aprotic media.
  • Catalysis Science & Technology

Catalytic carbonyl hydrosilylations viaa titanocene borohydride–PMHS reagent system

 Author affiliations

Abstract

Reduction of a wide range of aldehydes and ketones with catalytic amounts of titanocene borohydride in concert with a stoichiometric poly(methylhydrosiloxane) (PMHS) reductant is reported. Preliminary mechanistic studies demonstrate that the reaction is mediated by a reactive titanocene(III) complex, whose oxidation state remains constant throughout the reaction.

Godfred Fianu

Godfred Fianu

Robert A Flowers

Robert A Flowers

Danser Distinguished Faculty Chair in Chemistry and Deputy Provost for Faculty Affairs
Lehigh University
Bethlehem, United States
Phenyl methanol (2-c)
Phenyl methanol (2-c) was prepared from benzaldehyde (1-c) by the procedure outlined
in GP1. NMR analysis showed 100% conversion in 1 hour. 86% isolated yield of alcohol
product was obtained after complete workup.
1H NMR (400 MHz, CDCl3) δ 7.37 – 7.26 (m,5H), 4.59 (s, 2H), 2.99 (s, 1H).
13C NMR (101 MHz, CDCl3) δ 140.92, 128.56, 127.60, 127.07,77.52, 77.20, 76.88, 65.04.
STR1 STR2

//////////////

Share

 Leave a Reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

(required)

(required)

Time limit is exhausted. Please reload CAPTCHA.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: