AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

MK 8718

 Uncategorized  Comments Off on MK 8718
May 172016
 

img

Figure imgf000105_0002

MK 8718

Cas 1582729-24-5 (free base); 1582732-29-3 (HCl).
MF: C30H30ClF6N5O4
MW: 673.1891

INNOVATOR Merck Sharp & Dohme Corp., Merck Canada Inc.

((3S,6R)-6-(2-(3-((2S,3S)-2-amino-3-(4-chlorophenyl)-3-(3,5-difluorophenyl)propanamido)-5-fluoropyridin-4-yl)ethyl)morpholin-3-yl)methyl (2,2,2-trifluoroethyl)carbamate

MK-8718 is a potent, selective and orally bioavailable HIV protease inhibitor with a favorable pharmacokinetic profile with potential for further development.

A retrovirus designated human immunodeficiency virus (HIV), particularly the strains known as HIV type-1 (HIV-1) virus and type-2 (HIV-2) virus, is the etiological agent of acquired immunodeficiency syndrome (AIDS), a disease characterized by the destruction of the immune system, particularly of CD4 T-cells, with attendant susceptibility to opportunistic infections, and its precursor AIDS-related complex (“ARC”), a syndrome characterized by symptoms such as persistent generalized lymphadenopathy, fever and weight loss. This virus was previously known as LAV, HTLV-III, or ARV. A common feature of retrovirus replication is the extensive post-translational processing of precursor polyproteins by a virally encoded protease to generate mature viral proteins required for virus assembly and function. Inhibition of this processing prevents the production of normally infectious virus. For example, Kohl et al., Proc. Nat’l Acad. Sci. 1988, 85: 4686, demonstrated that genetic inactivation of the HIV encoded protease resulted in the production of immature, non-infectious virus particles. These results indicated that inhibition of the HIV protease represents a viable method for the treatment of AIDS and the prevention or treatment of infection by HIV.

Nucleotide sequencing of HIV shows the presence of a pol gene in one open reading frame [Ratner et al, Nature 1985, 313: 277]. Amino acid sequence homology provides evidence that the pol sequence encodes reverse transcriptase, an endonuclease, HIV protease and gag, which encodes the core proteins of the virion (Toh et al, EMBO J. 1985, 4: 1267; Power et al, Science 1986, 231 : 1567; Pearl et al, Nature 1987, 329: 351].

Several HIV protease inhibitors are presently approved for clinical use in the treatment of AIDS and HIV infection, including indinavir (see US 5413999), amprenavir (US5585397), saquinavir (US 5196438), ritonavir (US 5484801) and nelfmavir (US 5484926). Each of these protease inhibitors is a peptide-derived peptidomimetic, competitive inhibitor of the viral protease which prevents cleavage of the HIV gag-pol polyprotein precursor. Tipranavir (US 5852195) is a non-peptide peptidomimetic protease inhibitors also approved for use in treating HIV infection. The protease inhibitors are administered in combination with at least one and typically at least two other HIV antiviral agents, particularly nucleoside reverse transcriptase inhibitors such as zidovudine (AZT) and lamivudine (3TC) and/or non-nucleoside reverse transcriptase inhibitors such as efavirenz and nevirapine. Indinavir, for example, has been found to be highly effective in reducing HIV viral loads and increasing CD4 cell counts in HIV-infected patients, when used in combination with nucleoside reverse transcriptase inhibitors. See, for example, Hammer et al, New England J. Med. 1997, 337: 725-733 and Gulick et al, New England J. Med. 1997, 337: 734-739.

The established therapies employing a protease inhibitor are not suitable for use in all HIV-infected subjects. Some subjects, for example, cannot tolerate these therapies due to adverse effects. Many HIV-infected subjects often develop resistance to particular protease inhibitors. Furthermore, the currently available protease inhibitors are rapidly metabolized and cleared from the bloodstream, requiring frequent dosing and use of a boosting agent.

Accordingly, there is a continuing need for new compounds which are capable of inhibiting HIV protease and suitable for use in the treatment or prophylaxis of infection by HIV and/or for the treatment or prophylaxis or delay in the onset or progression of AIDS.

str1

str1

PATENT

https://www.google.co.in/patents/WO2014043019A1?cl=en

INTERMEDIATE 1

Synthesis of morpholine intermediate (tert-butyl ( ^S^-S-d tert- butyl(dimethyl)silylloxy|methyl)-2-(hydroxymethyl)morpholine-4-carboxylate)

Scheme 1

EXAMPLE 97

( S)- -(4-Chlorophenyl)-3,5-difiuoro-N-(5-fiuoro-4-{2-[(2R,5S)-5-({[(2,2,2- trifluoroethyl)carbamoyl]oxy}methyl)morpholin-2-yl]ethyl}pyridin-3-yl)-L-phenylalaninamide

Step 1. (2S,3S)-2-Azido-3-(4-chlorophenyl)-3-(3,5-difluorophenyl)propanoic acid

The title compound was prepared from 4-chlorocinnamic acid and 3,5- difluorophenylmagnesium bromide using the procedures given in steps 1-4 of Example 92.

Step 2. (2R,5S)-tert-butyl 2-(2-(3-((2S,3S)-2-azido-3-(4-chlorophenyl)-3-(3,5- difluorophenyl)propanamido)-5-fluoropyridin-4-yl)ethyl)-5-((((2,2,2- trifluoroethyl)carbamoyl)oxy)methyl)morpholine-4-carboxylate

The product from step 1 (105 mg, 0.31 mmol) and the product from step 4 of Example 89 (150 mg, 0.31 mmol) were dissolved in pyridine (1 mL) and the stirred solution was cooled to -10 °C in an ice/acetone bath. To the cold solution was added POCI3 dropwise (0.035 mL, 0.38 mmol). The mixture was stirred at -10 °C for 30 min. The reaction was quenched by the addition of saturated aqueous NaHC03 solution (1 mL) and the mixture was allowed to warm to ambient temperature. The mixture was diluted with water (10 mL) and extracted with dichloromethane (3 x 10 mL). The combined dichloromethane phases were dried (Na2S04), filtered, and the filtrate solvents were removed in vacuo. The residue was purified on a 12 g silica gel column using a gradient elution of 0-70% EtOAc:hexanes. Fractions containing product were combined and the solvents were removed in vacuo to give the title compound as a gum. (M+H)+ = 800.6.

Step 3. (2R,5S)-tert-butyl 2-(2-(3-((2S,3S)-2-amino-3-(4-chlorophenyl)-3-(3,5- difluorophenyl)propanamido)-5-fluoropyridin-4-yl)ethyl)-5-((((2,2,2- trifluoroethyl)carbamoyl)oxy)methyl)morpholine-4-carboxylate

The product from step 2 (150 mg, 0.19 mmol) and triphenylphosphine (74 mg, 0.28 mmol) were dissolved in THF (4 mL) and to the solution was added water (1 mL). The mixture was heated to reflux under a nitrogen atmosphere for 12 h. The mixture was cooled to ambient temperature and the solvents were removed in vacuo. The residue was purified on a 12 g silica gel column eluting with a gradient of 0-10% methanol: chloroform. Fractions containing product were combined and the solvents were removed in vacuo to give the title compound as a gum. (M+H)+ = 774.7. Step 4. ( S)- -(4-Chlorophenyl)-3,5-difluoro-N-(5-fluoro-4-{2-[(2R,5S)-5-({[(2,2,2- trifluoroethyl)carbamoyl]oxy}methyl)morpholin-2-yl]ethyl}pyridin-3-yl)-L-phenylala

The product from step 3 (60 mg, 0.078 mmol) was dissolved in a solution of 4M HCl in dioxane (1 mL, 4 mmol) and the solution was stirred at ambient temperature for 1 h. The solvent was removed under reduced pressure and the residue was dried in vacuo for 12 h to give an HCl salt of the title compound as a solid. LCMS: RT = 0.95 min (2 min gradient), MS (ES) m/z = 674.6 (M+H)+.

 

PAPER

Abstract Image

A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
§Albany Molecular Research Singapore Research Center, 61 Science Park Road #05-01, The Galen Singapore Science Park II, Singapore 117525
ACS Med. Chem. Lett., Article ASAP
DOI: 10.1021/acsmedchemlett.6b00135
*E-mail: christopher_bungard@merck.com. Phone: 215-652-5002.

References

Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group
Christopher J. Bungard*†, Peter D. Williams†, Jeanine E. Ballard†, David J. Bennett†, Christian Beaulieu‡, Carolyn Bahnck-Teets†, Steve S. Carroll†, Ronald K. Chang†, David C. Dubost†, John F. Fay†, Tracy L. Diamond†, Thomas J. Greshock†, Li Hao§, M. Katharine Holloway†, Peter J. Felock, Jennifer J. Gesell†, Hua-Poo Su†, Jesse J. Manikowski†, Daniel J. McKay‡, Mike Miller†, Xu Min†, Carmela Molinaro†, Oscar M. Moradei‡, Philippe G. Nantermet†, Christian Nadeau‡, Rosa I. Sanchez†, Tummanapalli Satyanarayana§, William D. Shipe†, Sanjay K. Singh§, Vouy Linh Truong‡, Sivalenka Vijayasaradhi§, Catherine M. Wiscount†, Joseph P. Vacca‡, Sheldon N. Crane‡, and John A. McCauley†
† Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
‡ Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
§ Albany Molecular Research Singapore Research Center, 61 Science Park Road #05-01, The Galen Singapore Science Park II, Singapore 117525
ACS Med. Chem. Lett., Article ASAP
DOI: 10.1021/acsmedchemlett.6b00135
Publication Date (Web): May 09, 2016

////MK-8718, HIV, protease, inhibitor

Supporting Info

O=C(OC[C@H]1NC[C@@H](CCC(C(F)=CN=C2)=C2NC([C@@H](N)[C@@H](C3=CC=C(Cl)C=C3)C4=CC(F)=CC(F)=C4)=O)OC1)NCC(F)(F)F

Share

MK-7145

 Uncategorized  Comments Off on MK-7145
May 172016
 

2D chemical structure of 1255204-84-2

MK-7145,

cas  1255204-84-2

1(3H)-Isobenzofuranone, 5,5′-(1,4-piperazinediylbis((1R)-1-hydroxy-2,1-ethanediyl))bis(4-methyl-

MF C26 H30 N2 O6, Molecular Weight 466.53
1(3H)​-​Isobenzofuranone, 5,​5′-​[1,​4-​piperazinediylbis[(1​R)​-​1-​hydroxy-​2,​1-​ethanediyl]​]​bis[4-​methyl-

The Renal Outer Medullary Potassium (ROMK) channel (KM .1 ) (see e.g., Ho,K., et al., Cloning and expression of an inwardly rectifying ATP -regulated potassium channel, Nature, 1993, 362(6415): p. 31-8.1, 2; and Shuck, M.E., et al., Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel, J Biol Chem, 1994, 269(39): p. 24261-70) is a member of the inward rectifier family of potassium channels expressed in two regions of the kidney: thick ascending loop of Henle (TALH) and cortical collecting duct (CCD) (see Hebert, S. C, et al., Molecular diversity and regulation of renal potassium channels, Physiol Rev, 2005, 85(1): p. 319-713). At the TALH, ROMK participates in potassium recycling across the luminal membrane which is critical for the function of the Na+/K+/2CF co-transporter, the rate-determining step for salt reuptake in this part of the nephron. At the CCD, ROMK provides a pathway for potassium secretion that is tightly coupled to sodium uptake through the amiloride-sensitive sodium channel (see Reinalter, S. C, et al., Pharmacotyping of hypokalemic salt-losing tubular disorders, Acta. Physiol Scand, 2004, 181(4): p. 513-21 ; and Wang, W., Renal potassium channels: recent developments, Curr Opin Nephrol Hypertens, 2004, 13(5): p. 549-55). Selective inhibitors of the ROMK channel (also referred to herein as inhibitors of ROMK or ROMK inhibitors) are predicted to represent novel diuretics for the treatment of hypertension and other conditions where treatment with a diuretic would be beneficial with potentially reduced liabilities (i.e., hypo- or hyperkalemia, new onset of diabetes, dyslipidemia) over the currently used clinical agents (see Lifton, R.P., A.G. Gharavi, and D.S. Geller, Molecular mechanisms of human hypertension, Cell, 2001, 104(4): p. 545-56). Human genetics (Ji, W., et al., Rare independent mutations in renal salt handling genes contribute to blood pressure variation, Nat Genet, 2008, 40(5): p. 592-9; and Tobin, M.D., et al., Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population, Hypertension, 2008, 51(6): p. 1658-64) and genetic ablation of ROMK in rodents (see Lorenz, J.N., et al., Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome, J Biol Chem, 2002, 277(40): p. 37871-80 and Lu, M., et al.s Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Banter’s) knockout mice, J Biol Chem, 2002, 277(40): p. 37881-7) support these expectations. To our knowledge, the first small molecule selective inhibitors of ROMK were reported from work done at Vanderbilt University as described in Lewis, L.M., et al., High-Throughput Screening Reveals a Small-Molecule Inhibitor of the Renal Outer Medullary Potassium Channel and KirJ.l, MoI Pharmacol, 2009, 76(5): p. 1094-1103.

PATENT

WO 2010129379

http://www.google.com/patents/WO2010129379A1?cl=ko

SCHEME 1

 

 

SCHEME 2

 

SCHEME 3

 

SCHEME 5

 

SCHEME 6

SCHEME 7

 

 

SCHEME 8


14 15

The preparation of compounds 16 can be achieved following the sequence detailed in Scheme 9. Treating epoxide 2-1 with commercially available 1-Boc piperazine at elevated temperatures gives rise to alcohol 2-2 (Nomura, Y. et al. Chemical & Pharmaceutical Bulletin, 1995, 43(2), 241-6). The hydroxyl group of 2-2 can be converted to the fluoride by treatment of such fluorinating reagent as DAST (Hudlicky, M. Organic Reactions, 1988, 35). Removal of the Boc group of 3-1 under acidic conditions such as TFA gives rise to piperazine 3-2. Piperazine 3-2 can be washed with an aqueous base solution followed by extraction with organic solvents to generate the free base form. The free base of 3-2 can be coupled to epoxide 5-1 at elevated temperatures to afford compound 16. The Ar-CHF- and Ar’-CHOH- groups in 16 represent examples of either Z1 or Z2.

SCHEME 9


16 General Procedures.

INTERMEDIATE (Ry-H (free base)

5-\(lR)-l -hγdroxγ-2-piperazio- 1 -ylethyl] -4-methyl-2-benzofuran- 1 f 3/f)-one To a 20 mL microwave tube charged with 4-methyl-5-[(2jS)-oxiran-2-yl]-2-benzofuran-l(3H)-one (1020 mg, 5.40 mmol) and a stir bar was added 1-Boc Piperazine (800mg, 4.3 mmol) and EtOH (15 mL). The tube was sealed and heated in a microwave apparatus to 150 0C for 1 hour. The crude product was adsorbed onto silica gel, and purified by flash chromatography (Hexanes-EtOAc with 10% EtOH: 0 – 100% gradient), and solvent removed to afford terl-butyl~4-[(2R-2-hydroxy-2-(4-methyl-l -oxo-1 ,3-dihydro-2-bers2θfuran-5-yl) ethyl}piperazine-l-carboxylate. LCMS M+l (calc. 377.20, found 377.13). This product was treated with neat TFA for 15 minutes to remove the Boc group. After removal of TFA under reduced pressure, the residue was taken into aq NaHCO3, and back-extracted with CHCl3-IPA (3:1). The organic layers were combined, dried over sodium sulfate, and concentrated to afford 5 – [( 1 R)- 1 -hydroxy-2-piperazin- 1 -ylethyl] -4-methyl-2-benzofuran- 1 (3H)-one. 1H NMR (OMSO-d6, 500 MHz) δ 7.68 (d, J= 8.0 Hz, IH), 7.65 (d, J= 8.0 Hz, IH)5 5.38, 5.35 (AB system, J- 15.4, J= 16.7, 2H), 5.06 (dd5 J- 3.9 Hz, J= 3.7 Hz, IH), 3.76 (m, IH)5 2.72 (m, 4H), 2.42 (m, 4H), 2.34 (d, J= 3.8 Hz5 IH), 2.32 (d, J= 3.8 Hz, IH), 2.24 (s, 3H); LC/MS: (IE, m/z) [M +I]+ = 277.03.

EXAMPLE 2A

5, 5 ‘-{ piperazine- 1 ,4-diylbis[( 1 R)- 1 -hydroxy ethane-2 , 1 -diyl] } bis(4-methyl-2-benzofuran- 1 (3H)-one)

Method 1: To a 20 mL microwave tube charged with 4-methyl-5-[(2i?)-oxiran-2-yl]-2-benzofuran-l(3H)-one (972 mg, 5.11 mmol) and piperazine (200 mg, 2.3 mmol) was added a stir bar and EtOH (16 mL). The tube was sealed and heated in a microwave apparatus to 150 0C for 90 minutes. The crude product was adsorbed onto silica gel, and purified by flash chromatography (MeOΗ-DCM 0 ~ 7% gradient). After removal of solvents, 5»5′-{piperazine-1 ,4-diyIbi s [( 1 R)- 1 -hydroxyethane-2, 1 -diyl] } bis(4-methyl-2-benzofuran- 1 (3 H)-one) was collected. 1H-NMR (500 MHz9 CDCl3) δ ppm 7.80 (s, 4H), 5.25 (s, 4H), 5.11 (d, J= 10.5 Hz5 2H), 4.00 (broad, 2H), 2.90 (broad, 4H)3 2.69-2.50 (m, 6H), 2.44 (t, J= 11 Hz, 2H), 2.29 (s, 6H); LCMS M+l (calc. 467, found 467).

Method 2: Piperazine (4.51 g, 52.4 mmol) and 4-methyl-5-[(2Λ)-oxiran-2-yl]-2-benzofuran-1 (3//)-one (20.0 g, 105 mmol) were charged to a 3-neck 500-mL roundbottom flask, equipped with a reflux condensor, under nitrogen. Toluene (80.0 mL, 751 mmol) and N,N-dimethylacetamide (80 mL, 854 mmol) were added to provide a suspension. The reaction mixture was warmed to 110 0C, becoming homogeneous at 25 0C. After stirring for 4.5 h at 110 0C, the temperature was increased to 115 °C to drive the reaction forward. After stirring for 48 h, the reaction mixture was cooled to RT. On cooling, crystallization occurred. Water was added via addition funnel (45 mL), generating a thick slurry. The suspension was filtered and the solids were washed with 4:1 water :DMA (60 mL), followed by water (2 x 35 mL). The solid was dried on the funnel under vacuum with a nitrogen sweep to constant mass. 5,5′-{Piperazine-l,4-diylbis[(li?)-l-hydroxyethane-2,l-diyl]}bis(4-methyl-2-beiizofurari-l(3H)-one) was isolated. 1H-NMR (500 MHz, CDCl3) δ ppm 7.80 (s, 4H), 5.25 (s, 4H), 5.11 (d, J- 11 Hz, 2H), 4.30-3.51 (broad, 2H), 2.90 (broad, 4H), 2.69-2.50 (m, 6H), 2.44 (t, J- 11 Hz, 2H), 2.30 (s, 6H).

Compounds of the present invention are amines and can therefore be converted to a variety of salts by treatment with any of a number of acids. For example, the compound of Example 2A can be converted to several different salt forms as shown in the following representative examples. These are selected examples and are not meant to be an exhaustive list; numerous additional salts can be prepared in a similar fashion using a variety of acids. EXAMPLE 2A-1 (di-HCl salt): 5,5t-{piperazme-l,4-diylbis[(17?)-l-hydroxyethane-2,l- diyl] } bis(4-methyl-2-benzofuran- 1 (3H)-one) dihydrochloride To a 250 mL pear shape flask charged with the free base (1.2 g, 2.6 mmol) and a stir bar was added DCM. The solution was stirred until all solids were gone. To this solution was added 4N HCl in dioxane (2.6 mL, 4.0 eq), and the mixture was allowed to stir for another 15 minutes. The solvent was removed on a rotary evaporator, and the product was left dry on a high vacuum pump until there was no weight change. The product was determined to be 5, 5 ‘-{piperazine- 1,4-diylbis [( 1 R)- 1 ~hydroxyethane-2, 1 -diyl] } bis(4-methyl-2-benzofuran- 1 (3i?)-one) dihydrochloride. EXAMPLE 2A-2 (HCl salt): 5,5’-{piperazine-l,4-diylbis[(l^)-l-hydroxyethane-2,l- diyl] } bis(4-methyl-2-benzofuran- 1 QHVone) hvdrochl oride

To a 20 dram vial charged with the free base (160 mg, 0.34 mmol) and a stir bar was added 0.1 M HCl in IPA. The solution was allowed to stir at RT for 30 minutes, and then heated to 400C for 1 hour. The solvent was removed under vacuum, and the resulting product was left on a high vacuum pump for 16 hours. The product corresponded to 5,5′-{piperazine-l,4-diylbis[(li?)-l-hydroxyethane~2, 1 -diyl] } bis(4-methyl-2-benzofuran- 1 (3 H)-one) hydrochloride.

EXAMPLE 2A-3 (mono-hydrate of the di-HCl salt): 5, 5′- {piperazine- l,4-diylbis[( Ii?)- 1-hydroxyethane-2,l-diyl] Ibis^-niethyl-g-benzofuran-lfS/^-one) dihydrochloride hydrate To a flask charged with the free base (1.0 g, 2.1 rnmol) and a stir bar was added 1 N HCl (50 mL). The mixture was allowed to stir until all solids dissolved. The solvent was removed on a rotary evaporator, and the resulting product was left on a high vacuum pump for 16 hours. The product was determined to be 5,5′-{piperazine-l ,4-diylbis[(li?)-l-hydroxyethane-2,l-diyl]}bis(4-methyl-2-benzofuran-l(3H)-one) dihydrochloride hydrate.

EXAMPLE 2A-4 (H2SO4 salt): 5.5′-{piperaziiie-l>4-diylbis[(lJΪ)-l-hydioxyethane-2,l- diyl] }bis(4-methyl-2-benzofuran-l(3/f)-one) sulfate (salt) To a 100 mL flask charged with a solution of the free base (154 mg, 0.330 mmol) in DMF : MeOH (3 : 1) (20 mL) and a stir bar was added 0.1 M H2SO4 (3.3 mL). The solution was allowed to stir at RT for 30 minutes, and then heated to 40 0C for 2 hours. A lot of solids formed during that time. The solvent was removed under vacuum, and the white solids were left on high vacuum for 16 hours to afford 5)5l-{piperazine-l,4-diylbis[(lJ?)~l-hydroxyethane-2,l-diyl] }bis(4-methyl-2-benzofuran-l(3H)-one) sulfate (salt).

Paper

Abstract Image

ROMK, the renal outer medullary potassium channel, is involved in potassium recycling at the thick ascending loop of Henle and potassium secretion at the cortical collecting duct in the kidney nephron. Because of this dual site of action, selective inhibitors of ROMK are expected to represent a new class of diuretics/natriuretics with superior efficacy and reduced urinary loss of potassium compared to standard-of-care loop and thiazide diuretics. Following our earlier work, this communication will detail subsequent medicinal chemistry endeavors to further improve lead selectivity against the hERG channel and preclinical pharmacokinetic properties. Pharmacological assessment of highlighted inhibitors will be described, including pharmacodynamic studies in both an acute rat diuresis/natriuresis model and a subchronic blood pressure model in spontaneous hypertensive rats. These proof-of-biology studies established for the first time that the human and rodent genetics accurately predict the in vivo pharmacology of ROMK inhibitors and supported identification of the first small molecule ROMK inhibitor clinical candidate, MK-7145.

Discovery of MK-7145, an Oral Small Molecule ROMK Inhibitor for the Treatment of Hypertension and Heart Failure

Departments of Discovery Chemistry, Ion Channels, §In Vivo Pharmacology, Cardiorenal, and Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
ACS Med. Chem. Lett., Article ASAP
DOI: 10.1021/acsmedchemlett.6b00122
*Tel: 908-740 4932. E-mail: haifeng_tang@merck.com.
str1

////////

Cc1c(ccc2c1COC2=O)[C@H](CN3CCN(CC3)C[C@@H](c4ccc5c(c4C)COC5=O)O)O

Share

ICH Q3D Implementation Working Group (IWG)—Training Modules

 regulatory, Uncategorized  Comments Off on ICH Q3D Implementation Working Group (IWG)—Training Modules
May 172016
 

ICH Q3D Implementation Working Group (IWG)—Training Modules


ICH Q3D is a complex guideline. The overall requirement in terms of control is clear—there are defined limits for some 24 elements, and levels of the elements described must be controlled within these limits in the final drug product. Simple. The complexity comes when defining how this is achieved. The guideline provides a series of options to evaluate risk and effect control, ranging from control in each individual component based on a fixed dose for the product of 10 g (Option 1) to simply testing the final product (Option 3). A detailed description of the options and when/how these are applied as part of a risk assessment is beyond the scope of this review; the point is that there are significant challenges in applying the guideline practically solely using the guideline for that purpose. This was recognized by the ICH Expert Working Group responsible for the guideline, resulting in the establishment immediately after step 4 of an Implementation Working Group. A key objective of the IWG was to develop training materials to assist implementation.
In February ICH finally published the long awaited training modules.(2) These modules, produced by the ICH Q3D implementation working group, cover both safety and quality aspects, the areas covered are listed below:

Module 0

This provides an overview of the modules. Included within this is a very useful flow diagram,Figure 1, highlighting the anticipated overall process from the risk assessment through to definition of control strategy.

Modules 1–3 Cover Toxicology Aspects

Module 1—Different Routes of Administration

Module 2—Justification of Levels Greater than Permissible Daily Exposure Limits

Module 3—Non ICH Elements

Modules 4–7 Cover Chemistry (Quality) Aspects

Module 4—Large Volume Parenterals

Module 5—Risk Assessment

Module 6—Control

Module 7—Calculation Options

Highlighting some key points, module 5, relating to risk assessments, discusses the key role of GMP in assessing risk—this is an important and a helpful point relating to API manufacture. It emphasizes the importance of:

1.

Design and qualification;

2.

Maintenance procedures.

However, it also focuses on the risk arising from manufacturing equipment, making a relatively generic statement over the often more chemically aggressive nature of API manufacturing procedures compared to drug product manufacturing. It even suggests monitoring the drug substance for potential impurities arising from manufacturing equipment (e.g., stainless steel—Cr, Mn, Mo, V, Ni). It is a pity that this risk is highlighted without also making the point that it would be expected that such risk would be addressed as part of GMP and form part of the process accommodation procedure rather than rely on screening to verify.

Rightly the module makes the point that a significant potential source of elemental impurities arises from the use of metal catalysts in the synthesis of drug substances, especially if used in the latter stages of synthesis. It also states that:

“Knowledge of potential elemental impurities in synthetic steps prior to the final drug substance may provide information that can assist in the preparation of the risk assessment.”

This is an interesting point and one that cuts to the heart of the uncertainties around practical implementation. While a valid point, it raises key questions such as how many steps prior to the API should be assessed? Clearly this will be process/product specific, but it is a very real question any risk assessment will have to tackle.
Another interesting point made in the module is the potential for “platform” risk assessments. This is the concept of a risk assessment applicable across a series of products. One such platform may be for example, oligonucleotides.(3) In such instances, where the manufacturing process in terms of reagent type, equipment, and process conditions are similar irrespective of the precise end product, it should be possible to conduct an assessment based on one process and for this to relevant/transposable to comparable processes.

Figure

Figure 1
Module 6—Control of Elemental Impurities—also provides useful advice emphasizing the importance of control across the product lifecycle. In the context of the manufacture of the API, this requires oversight and governance over changes to the process that may affect the risk assessment, e.g., change in catalyst load, and so forth. Such changes require a re-evaluation and possibly confirmatory testing. Another point emphasized in the module is that routine testing of Class 1 metals, i.e., arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), is NOT required unless there is an identified risk. This is a very important and helpful point clearly reiterating the core principle of ICH Q3D that any control strategy should be based on the risk assessment. This is especially important as several regulatory queries have been reported asking for data for Class 1 and also Class 2A metals for APIs.

One area described in Module 6 is the concept of periodic testing. This is an area of potential concern and ambiguity. It states that:

“Where the risk assessment indicates that routine testing is considered unnecessary but some additional assurance is needed post approval, periodic testing of the drug product or one or more individual components may be proposed by the applicant and implemented upon acceptance by the regional regulatory authority.”

An example is provided relating to use of a Pt catalyst in the manufacture of the API, this being the final step used in the API synthesis. In the example detectable levels of Pt at ∼ 20% of the PDE are observed (below the 30% limit stated in ICH Q3D), based on this periodic testing being proposed. In the case study described this may seem sensible but how close to reality is such an example? In such a case would an applicant simply not specify Pt on the API specification? The worry is that the option for periodic testing may be blunt instrument and be something that is regularly requested.

USP Chapter ⟨232⟩

USP very recently announced(4) a series of revisions to USP Chapter ⟨232⟩, Elemental Impurities, the revisions made being intended to align the general chapter more closely to ICH Q3D. One of the most significant is the removal of the need to routinely screen for Class 1 metals as part of any analysis, the final sentence in the text outlined below being deleted.

If, by process monitoring and supply chain control, manufacturers can demonstrate compliance, then further testing may not be needed. When testing is done to demonstrate compliance, proceed as directed in Elemental Impurities—Procedures ⟨233⟩.

This is a welcome and important amendment; the previous requirement making little scientific sense, there being no actual evidence that Class 1 metals would be more prevalent, for example, where a platinum catalyst was used than in the absence of a catalyst. Such catalysts are not a source of class 1 metals.

Overall

Overall there are likely to be challenges/uncertainties associated with ICH Q3D leading up to and for some period after the effective date as the guideline beds in, but the crucial fact is that all of the evidence to date indicates it is unlikely that there will be a widespread impact caused by issues of excessive levels of any elemental impurity whereby effective control cannot be realized.
/////////ICH Q3D, Elemental Impurities, Procedures ⟨233⟩, Training Modules
Share

ICH M8 “Specification for Submission Formats for eCTD”

 regulatory  Comments Off on ICH M8 “Specification for Submission Formats for eCTD”
May 172016
 

This additional specification describes the way files should be constructed for inclusion in the eCTD.

Key Points:

  • It is not necessary to use a product from Adobe or from any specific company to produce PDF documents.
  • All ICH regional regulatory authorities are able to read and accept PDF files saved as PDF version 1.4 through 1.7, PDF/A-1, or PDF/A-2 compliant to ISO 32000-1:2008.
  • The size of a PDF file should not exceed 500MB.

  • Regulatory authorities cannot guarantee the availability of any fonts except Times New Roman, Arial, and Courier and fonts supported in the Acrobat product set itself. Therefore, all additional fonts used in the PDF files should be embedded to ensure that those fonts would always be available to the reviewer.
  • Times New Roman, 12-point font, is adequate in size for narrative text and should be used whenever possible. Times New Roman font sizes 9-10 or an equivalent size of other recommended fonts are considered acceptable in tables but smaller font sizes should be avoided.
  • The use of a black font color is recommended. Blue can be used for hypertext links. Light colors can be difficult to read on a monitor as well as when printed, and should be avoided. The use of background shadowing can be difficult to read and should be avoided.
  • Pages should be properly oriented so that all portrait pages are presented in portrait and all landscape pages are presented in landscape.
  • A sufficient margin of at least 2.0 cm on the left side of each page for portrait and top of the page for landscape should be provided to avoid obscuring information. The remaining margins should be a Page 6 of 9minimum of 0.8 cm. Header and footer information can appear within these margins but should not appear so close to the page edge to risk being lost upon printing.
  • All pages of a document should include a unique header or footer that briefly identifies its subject matter.
  • Scanning should be avoided where possible.
  • It is recommended that scanning be undertaken at a resolution of 300 dots per inch (dpi) to balance legibility and file size. The use of grayscale or color is discouraged because of file size. After scanning, resampling to a lower resolution should be avoided.
  • Paper documents containing hand-written notes should be scanned at a resolution of at least 300 dpi. Hand-written notes should be done in black ink for clarity, 600 dpi is recommended. High-pressure liquid chromatography or similar images should be scanned at a resolution of at least 300 dpi.

  • Applicants should validate the quality of the renditions.
  • Hypertext links can be designated by rectangles using thin lines or by blue text as appropriate. Bookmarks are expected even if there is no TOC In the document. The use of no more than 4 levels in the hierarchy is recommended, but additional levels could be created for study reports if such bookmarks contribute to efficient navigation.
  • Relative paths should be used when creating hypertext links to minimize the loss of hyperlink functionality when folders are moved between disk drives.

  • The bookmarks should be collapsed when document is opened so that all bookmarks are at the first level.
  • The first page of the document should be numbered page 1, and all subsequent pages (including appendices and attachments) should be numbered consecutively with Arabic numerals. Roman numerals should not be used to number page. The only exception should be where a document is split because of its size, the second or subsequent file should be numbered consecutively to that of the first or preceding file.
  • Security fields should be set to allow printing, changes to the document, selecting text and graphics, and adding or changing notes and form fields. The exception to this rule includes regulatory forms with pre-existing security and literature references that need to be copyright protected.

 

Reference

http://estri.ich.org/ssf/Specification_for_Submission_Formats_for_eCTD_v1_0_.pdf

////////ICH M8, Specification, Submission Formats,  eCTD

Share

Ethyl 1-(7-chloroquinolin-4-yl)-5-methyl-1H-1,2,3-triazole-4-carboxylate

 Uncategorized  Comments Off on Ethyl 1-(7-chloroquinolin-4-yl)-5-methyl-1H-1,2,3-triazole-4-carboxylate
May 172016
 

STR1

STR1

 

 

 

Scheme 1 General scheme of the reaction. 

Scheme 2 

General procedure for the synthesis of 7-chloroquinoline-1,2,3-triazoyl carboxylates

To a solution of 4-azido-7-chloroquinoline 1 (0.3 mmol, 0.061 g) in DMSO (0.3 mL), was firstly added the β-ketoesters 2a-k (0.3 mmol) and then the catalyst pyrrolidine (0.03 mmol. 0.021 g). The reaction mixture was stirred in an open vial at room temperature for 24 hours. After completion of the reaction, the crude product was purified by column chromatography on silica gel using a mixture of hexanes/ethyl acetate (5:1) as the eluent to afford the desired products 3a-k.

Ethyl 1-(7-chloroquinolin-4-yl)-5-methyl-1H-1,2,3-triazole-4-carboxylate (3a)

Yield: 0.085 g (90%); white solid; mp 128-130 °C;

1H NMR (CDCl3, 300 MHz) δ 9.15 (d, 1H, J4.5 Hz, HetAr-H), 8.27 (d, 1H, J1.9 Hz, HetAr-H), 7.60 (dd, 1H, J9.0 and 1.9 Hz, HetAr-H), 7.48 (d, 1H, J4.5 Hz, HetAr-H), 7.34 (d, 1H, J9.0 Hz, HetAr-H), 4.50 (qua, 2H, J7.1 Hz, OCH2), 2.49 (s, 3H, CH3), 1.47 (t, 3H, J7.1 Hz, CH3);

13C NMR (CDCl3, 75 MHz) δ 161.10, 151.28, 149.88, 140.20, 139.34, 137.00, 136.76, 129.67, 128.93, 123.58, 122.09, 118.75, 61.15, 14.18, 9.44;

MS m/z (relative intensity): 316 (7), 259 (15), 243 (17), 231 (19), 217 (45), 215 (100), 214 (22), 205 (16), 203 (19), 189 (28), 181 (27), 179 (27), 164 (26), 162 (80), 137 (15), 135 (44), 127 (44), 126 (27), 100 (20), 99 (65), 83 (30), 75 (15), 74 (14), 43 (25);

HRMS calcd. for C15H14ClN4O2 [M + H]+: 317.0805; found: 317.0788.

Journal of the Brazilian Chemical Society

On-line version ISSN 1678-4790

J. Braz. Chem. Soc. vol.27 no.1 São Paulo Jan. 2016

http://dx.doi.org/10.5935/0103-5053.20150239

ARTICLES

7-Chloroquinoline-1,2,3-triazoyl Carboxylates: Organocatalytic Synthesis and Antioxidant Properties

Maiara T. Saraivaa  , Roberta Krügera  , Rodolfo S. M. Baldinottib  , Eder J. Lenardãoa  , Cristiane Lucheseb  , Lucielli Savegnagob  , Ethel A. Wilhelmb  *  , Diego Alvesa  * 

aLaboratório de Síntese Orgânica Limpa (LASOL, CCQFA), Universidade Federal de Pelotas (UFPel), CP 354, 96010-900 Pelotas-RS, Brazil

bGrupo de Pesquisa em Neurobiotecnologia (GPN), CDTec/CCQFA, Universidade Federal de Pelotas (UFPel), CP 354, 96010-900 Pelotas-RS, Brazil

ABSTRACT

We describe herein our results on the synthesis and antioxidant properties of 7-chloroquinoline-1,2,3-triazoyl-4-carboxylates. This class of compounds have been synthesized in moderated to excellent yields by the reaction of 4-azido-7-chloroquinoline with a range of β-ketoesters in the presence of a catalytic amount of pyrrolidine (10 mol%). The synthesized compounds ethyl 1-(7-chloroquinolin-4-yl)-5-methyl-1H-1,2,3-triazole-4-carboxylate and ethyl 1-(7-chloroquinolin-4-yl)-5-phenyl-1H-1,2,3-triazole-4-carboxylate were screened for their in vitro antioxidant activity and the results demonstrated that the first compound reduces the lipid peroxidation levels induced by sodium nitroprusside in liver of mice, while the second compound shown nitric oxide scavenging activity. This is an efficient method to produce new heterocyclic compounds with potential antioxidant activities.

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016000100041&lng=en&nrm=iso&tlng=en

e-mail: diego.alves@ufpel.edu.br, ethelwilhelm@yahoo.com.br

Figure 1 Biologically important quinolines. 

Key words: quinolines,  1,2,3-triazoles,  organocatalysis,  cycloaddition,  antioxidant

/////////////

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: