AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

The flow synthesis of heterocycles for natural products and medicinal chemistry applications

 PROCESS, SYNTHESIS  Comments Off on The flow synthesis of heterocycles for natural products and medicinal chemistry applications
Sep 142014
 

The flow synthesis of heterocycles for natural products and medicinal chemistry applications

http://link.springer.com/article/10.1007%2Fs11030-010-9282-1

M. Baumann, I.R. Baxendale, S.V. Ley, Mol. Div. 2011, 15, 613-630.

This article represents an overview of recent research from the Innovative Technology Centre in the field of flow chemistry which was presented at the FROST2 meeting in Budapest in October 2009. After a short introduction of this rapidly expanding field, we discuss some of our results with a main focus on the synthesis of heterocyclic compounds which we use in various natural product and medicinal chemistry programmes.

Share

Synthesis of (-)-hennoxazole A: integrating batch and flow chemistry methods

 SYNTHESIS  Comments Off on Synthesis of (-)-hennoxazole A: integrating batch and flow chemistry methods
Sep 142014
 

 

Untitled-1

 

Synthesis of (-)-hennoxazole A: integrating batch and flow chemistry methods

A. Fernández, Z.G. Levine, M. Baumann, S. Sulzer-Mossé, C. Sparr, S. Schläger, A. Metzger, I.R. Baxendale, S.V. Ley,Synlett, 2013, 24, 514-518.

A new total synthesis of (–)-hennoxazole A is reported. The synthetic approach is based on the preparation of three similarly sized fragments resulting in a fast and convergent assembly of the natural product. The three key reactions of the synthesis include a highly stereoselective 1,5-anti aldol coupling, a gold-catalyzed alkoxycyclization reaction, and a stereocontrolled diene cross-meta­thesis. The synthesis involves integrated batch and flow chemistry methods leading to the natural product in 16 steps longest linear ­sequence and 2.8% overall yield.

read

https://www.thieme-connect.de/DOI/DOI?10.1055/s-0032-1318109

 

Share

Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of (E/Z)-tamoxifen

 SYNTHESIS  Comments Off on Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of (E/Z)-tamoxifen
Sep 142014
 

 

op-2013-001548_0014

 

 

Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of (E/Z)-tamoxifen

P.R.D. Murray, D.L. Browne, J.C. Pastre, C. Butters, D. Guthrie, S.V. Ley, Org. Proc. Res. Dev. 2013, 17, 1192-1208.

A new enabling technology for the pumping of organometallic reagents such as n-butyllithium, Grignard reagents, and DIBAL-H is reported, which utilises a newly developed, chemically resistant, peristaltic pumping system. Several representative examples of its use in common transformations using these reagents, including metal–halogen exchange, addition, addition–elimination, conjugate addition, and partial reduction, are reported along with examples of telescoping of the anionic reaction products. This platform allows for truly continuous pumping of these highly reactive substances (and examples are demonstrated over periods of several hours) to generate multigram quantities of products. This work culminates in an approach to the telescoped synthesis of (E/Z)-tamoxifen using continuous-flow organometallic reagent-mediated transformations.

 

read

http://pubs.acs.org/doi/abs/10.1021/op4001548

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: