AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

FDA approves Keytruda for advanced melanoma, First PD-1 blocking drug to receive agency approval

 MONOCLONAL ANTIBODIES, Uncategorized  Comments Off on FDA approves Keytruda for advanced melanoma, First PD-1 blocking drug to receive agency approval
Sep 052014
 

September 4, 2014

FDA Release

The U.S. Food and Drug Administration today granted accelerated approval to Keytruda (pembrolizumab) for treatment of patients with advanced or unresectable melanoma who are no longer responding to other drugs.

Melanoma, which accounts for approximately 5 percent of all new cancers in the United States, occurs when cancer cells form in skin cells that make the pigment responsible for color in the skin. According to the National Cancer Institute, an estimated 76,100 Americans will be diagnosed with melanoma and 9,710 will die from the disease this year.

Keytruda is the first approved drug that blocks a cellular pathway known as PD-1, which restricts the body’s immune system from attacking melanoma cells. Keytruda is intended for use following treatment with ipilimumab, a type of immunotherapy. For melanoma patients whose tumors express a gene mutation called BRAF V600, Keytruda is intended for use after treatment with ipilimumab and a BRAF inhibitor, a therapy that blocks activity of BRAF gene mutations.

“Keytruda is the sixth new melanoma treatment approved since 2011, a result of promising advances in melanoma research,” said Richard Pazdur, M.D., director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research. “Many of these treatments have different mechanisms of action and bring new options to patients with melanoma.”

The five prior FDA approvals for melanoma include: ipilimumab (2011), peginterferon alfa-2b (2011), vemurafenib (2011), dabrafenib (2013), and trametinib (2013).

The FDA granted Keytruda breakthrough therapy designation because the sponsor demonstrated through preliminary clinical evidence that the drug may offer a substantial improvement over available therapies. It also received priority review and orphan product designation. Priority review is granted to drugs that have the potential, at the time the application was submitted, to be a significant improvement in safety or effectiveness in the treatment of a serious condition. Orphan product designation is given to drugs intended to treat rare diseases.

The FDA action was taken under the agency’s accelerated approval program, which allows approval of a drug to treat a serious or life-threatening disease based on clinical data showing the drug has an effect on a surrogate endpoint reasonably likely to predict clinical benefit to patients. This program provides earlier patient access to promising new drugs while the company conducts confirmatory clinical trials. An improvement in survival or disease-related symptoms has not yet been established.

Keytruda’s efficacy was established in 173 clinical trial participants with advanced melanoma whose disease progressed after prior treatment. All participants were treated with Keytruda, either at the recommended dose of 2 milligrams per kilogram (mg/kg) or at a higher dose of 10 mg/kg. In the half of the participants who received Keytruda at the recommended dose of 2 mg/kg, approximately 24 percent had their tumors shrink. This effect lasted at least 1.4 to 8.5 months and continued beyond this period in most patients. A similar percentage of patients had their tumor shrink at the 10 mg/kg dose.

Keytruda’s safety was established in the trial population of 411 participants with advanced melanoma. The most common side effects of Keytruda were fatigue, cough, nausea, itchy skin (pruritus), rash, decreased appetite, constipation, joint pain (arthralgia) and diarrhea. Keytruda also has the potential for severe immune-mediated side effects. In the 411 participants with advanced melanoma, severe immune-mediated side effects involving healthy organs, including the lung, colon, hormone-producing glands and liver, occurred uncommonly.

Keytruda is marketed by Merck & Co., based in Whitehouse Station, New Jersey.

 

 

 

Pembrolizumab, LambrolizumabMK-3475

STRUCTURAL FORMULA
Heavy chain
QVQLVQSGVE VKKPGASVKV SCKASGYTFT NYYMYWVRQA PGQGLEWMGG 50
INPSNGGTNF NEKFKNRVTL TTDSSTTTAY MELKSLQFDD TAVYYCARRD 100
YRFDMGFDYW GQGTTVTVSS ASTKGPSVFP LAPCSRSTSE STAALGCLVK 150
DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTKT 200
YTCNVDHKPS NTKVDKRVES KYGPPCPPCP APEFLGGPSV FLFPPKPKDT 250
LMISRTPEVT CVVVDVSQED PEVQFNWYVD GVEVHNAKTK PREEQFNSTY 300
RVVSVLTVLH QDWLNGKEYK CKVSNKGLPS SIEKTISKAK GQPREPQVYT 350
LPPSQEEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS 400
DGSFFLYSRL TVDKSRWQEG NVFSCSVMHE ALHNHYTQKS LSLSLGK 447
Light chain
EIVLTQSPAT LSLSPGERAT LSCRASKGVS TSGYSYLHWY QQKPGQAPRL 50′
LIYLASYLES GVPARFSGSG SGTDFTLTIS SLEPEDFAVY YCQHSRDLPL 100′
TFGGGTKVEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV 150′
QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV 200′
THQGLSSPVT KSFNRGEC 218′
Disulfide bridges
22-96 22”-96” 23′-92′ 23”’-92”’ 134-218′ 134”-218”’ 138′-198′ 138”’-198”’
147-203 147”-203” 226-226” 229-229” 261-321 261”-321” 367-425 367”-425”
Glycosylation sites (N)
Asn-297 Asn-297”
lambrolizumab, or MK-3475

1374853-91-4

C6504H10004N1716O2036S46 (peptide)
MOL. MASS 146.3 kDa (peptide)

Pembrolizumab, Lambrolizumab (also known as MK-3475) is a drug in development by Merck that targets the PD-1 receptor. The drug is intended for use in treating metastatic melanoma.

http://www.ama-assn.org/resources/doc/usan/lambrolizumab.pdf  structureof lambrolizumab, or MK-3475

https://download.ama-assn.org/resources/doc/usan/x-pub/pembrolizumab.pdf  

Statement on a Nonproprietary Name Adopted by the USAN Council. November 27, 2013.

see above link for change in name

may 2, 2013,

An experimental drug from Merck that unleashes the body’s immune system significantly shrank tumors in 38 percent of patients with advanced melanoma, putting the company squarely in the race to bring to market one of what many experts view as the most promising class of drugs in years.

The drugs are attracting attention here at the annual meeting of the American Society of Clinical Oncology, even though they are still in the early stage of testing. Data from drugs developed by Bristol-Myers Squibb and by Roche had already been released.

The drugs work by disabling a brake that prevents the immune system from attacking cancer cells. The brake is a protein on immune system cells called programmed death 1 receptor, or PD-1.

Merck’s study, which was presented here Sunday and also published in the New England Journal of Medicine, involved 135 patients. While tumors shrank in 38 percent of the patients over all, the rate was 52 percent for patients who got the highest dose of the drug, which is called lambrolizumab, or MK-3475.

But that is what is disclosed tonight, as to pembrolizumab, or MK-3475. Wow. With over $44 billion in 2013 worldwide revenue, that disclosure implies (to seasoned SEC lawyers) that spending on this one drug (or, biologic, to be more technical about it — but remember 40 years ago, Merck had no protein chain biologics research & development programs in its pipe — only chemical drug compounds). . . is material, to that number. Normally that would, in turn, mean that the spending is approaching 5 per cent of revenue. So — Merck may be spending $2.2 billion over the next 12 rolling months, on MK-3475. That’s one BIGhairy science bet, given that Whitehouse Station likely already had over $2 billion invested in the program, at year end 2013.

About Pembrolizumab
Pembrolizumab (MK-3475) is an investigational selective, humanized monoclonal anti-PD-1 antibody designed to block the interaction of PD-1 on T-cells with its ligands, PD-L1 and PD-L2, to reactivate anti-tumor immunity. Pembrolizumab exerts dual ligand blockade of PD-1 pathway.
Today, pembrolizumab is being evaluated across more than 30 types of cancers, as monotherapy and in combination. It is anticipated that by the end of 2014, the pembrolizumab development program will grow to more than 24 clinical trials across 30 different tumor types, enrolling an estimated 6,000 patients at nearly 300 clinical trial sites worldwide, including new Phase 3 studies in head and neck and other cancers. For information about Merck’s oncology clinical studies, please click here.
The Biologics License Application (BLA) for pembrolizumab is under priority review with the U.S. Food and Drug Administration (FDA) for the proposed indication for the treatment of patients with advanced melanoma previously-treated with ipilimumab; the PDUFA date is October 28, 2014. Pembrolizumab has been granted FDA’s Breakthrough Therapy designation for advanced melanoma. If approved by the FDA, pembrolizumab has the potential to be the first PD-1 immune checkpoint modulator approved in this class. The company plans to file a Marketing Authorization Application in Europe for pembrolizumab for advanced melanoma in 2014.
About Head and Neck Cancer
Head and neck cancers are a related group of cancers that involve the oral cavity, pharynx and larynx. Most head and neck cancers are squamous cell carcinomas that begin in the flat, squamous cells that make up the thin surface layer (epithelium) of the head and neck (called the). The leading risk factors for head and neck cancer include tobacco and alcohol use. Infection with certain types of HPV, also called human papillomaviruses, is a risk factor for some types of head and neck cancer, specifically cancer of the oropharynx, which is the middle part of the throat including the soft palate, the base of the tongue, and the tonsils. Each year there are approximately 400,000 cases of cancer of the oral cavity and pharynx, with 160,000 cancers of the larynx, resulting in approximately 300,000 deaths.


About Merck Oncology: A Focus on Immuno-Oncology
At Merck Oncology, our goal is to translate breakthrough science into biomedical innovations to help people with cancer worldwide. Harnessing immune mechanisms to fight cancer is the priority focus of our oncology research and development program. The Company is advancing a pipeline of immunotherapy candidates and combination regimens. Cancer is one of the world’s most urgent unmet medical needs. Helping to empower people to fight cancer is our passion. For information about Merck’s commitment to Oncology visit the Oncology Information Center at http://www.mercknewsroom.com/oncology-infocenter.


About Merck
Today’s Merck is a global healthcare leader working to help the world be well. Merck is known as MSD outside the United States and Canada. Through our prescription medicines, vaccines, biologic therapies, and consumer care and animal health products, we work with customers and operate in more than 140 countries to deliver innovative health solutions. We also demonstrate our commitment to increasing access to healthcare through far-reaching policies, programs and partnerships. For more information, visit www.merck.com and connect with us on Twitter, Facebook and YouTube.

 

Hamid, O; Robert, C; Daud, A; Hodi, F. S.; Hwu, W. J.; Kefford, R; Wolchok, J. D.; Hersey, P; Joseph, R. W.; Weber, J. S.; Dronca, R; Gangadhar, T. C.; Patnaik, A; Zarour, H; Joshua, A. M.; Gergich, K; Elassaiss-Schaap, J; Algazi, A; Mateus, C; Boasberg, P; Tumeh, P. C.; Chmielowski, B; Ebbinghaus, S. W.; Li, X. N.; Kang, S. P.; Ribas, A (2013). “Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma”. New England Journal of Medicine 369 (2): 134–44. doi:10.1056/NEJMoa1305133PMID 23724846

key words
FDA,  approved,  Keytruda,  advanced melanoma, PD-1 blocking drug, pembrolizumab, LambrolizumabMK-3475, Monoclonal antibody

 

Share

Acebutolol……..For the management of hypertension and ventricular premature beats in adults.

 Uncategorized  Comments Off on Acebutolol……..For the management of hypertension and ventricular premature beats in adults.
Sep 052014
 

Acebutolol

Acebutolol
N-(3-Acetyl-4-[2-hydroxy-3-(isopropylamino)propoxy]phenyl)butanamide
3′-acetyl-4′-(2-hydroxy-3-(isopropylamino)propoxy)butyranilide
(±)-acebutolol
Acetobutolol; Sectral; Prent; Neptal; Acebutololum; Acebutololo; (+-)-Acebutolol; dl-Acebutolol; Acebrutololum

Molecular Formula: C18H28N2O4   Molecular Weight: 336.42592
CAS Registry Number: 37517-30-9
CAS Name: N-[3-Acetyl-4-[2-hydroxy-3-[(1-methylethyl)amino]propoxy]phenyl]butanamide
Additional Names: 3¢-acetyl-4¢-[2-hydroxy-3-(isopropylamino)propoxy]butyranilide; 1-(2-acetyl-4-n-butyramidophenoxy)-2-hydroxy-3-isopropylaminopropane; 5¢-butyramido-2¢-(2-hydroxy-3-isopropylaminopropoxy)acetophenone
Percent Composition: C 64.26%, H 8.39%, N 8.33%, O 19.02%
Melting point: mp 119-123°
Derivative Type: Hydrochloride
CAS Registry Number: 34381-68-5
Manufacturers’ Codes: M & B 17803A; IL-17803A
Trademarks: Acecor (SPA); Acetanol (RPR); Neptal (Procter & Gamble); Prent (Bayer); Sectral (RPR)
Molecular Formula: C18H28N2O4.HCl
Molecular Weight: 372.89
Percent Composition: C 57.98%, H 7.84%, N 7.51%, O 17.16%, Cl 9.51%
Properties: Crystals from anhydr methanol-anhydr diethyl ether, mp 141-143°. Freely sol in water. Soly at room temperature (mg/ml): water 200; ethanol 70.
Melting point: mp 141-143°
Therap-Cat: Antihypertensive; antianginal; antiarrhythmic (class II).
Acebutolol (trade names SectralPrent) is a beta blocker for the treatment of hypertension and arrhythmias.
A cardioselective beta-adrenergic antagonist with little effect on the bronchial receptors. The drug has stabilizing and quinidine-like effects on cardiac rhythm as well as weak inherent sympathomimetic action.

Brief background information

Salt ATC Formula MM CAS
C07AB04
C07BB04
18 H 28 N 2 O 4 336.43 g / mol 37517-30-9
(R) be the bases C07AB04
C07BB04
18 H 28 N 2 O 4 336.43 g / mol 68107-81-3
(S) be the bases C07AB04
C07BB04
18 H 28 N 2 O 4 336.43 g / mol 68107-82-4
(RS) -monogidrohlorid C07AB04
C07BB04
18 H 28 N 2 O 4 · HCl 372.89 g / mol 34381-68-5
Acebutolol
Acebutolol structure.svg
Acebutolol ball-and-stick.png
Systematic (IUPAC) name
(RS)-N-{3-acetyl-4-[2-hydroxy-3-(propan-2-ylamino)propoxy]phenyl}butanamide
Clinical data
Trade names Sectral
AHFS/Drugs.com monograph
MedlinePlus a687003
Licence data US FDA:link
Pregnancy cat. (AU) B (US)
Legal status ℞ Prescription only
Routes oral, iv
Pharmacokinetic data
Bioavailability 40% (range 35 to 50%)
Metabolism Hepatic
Half-life 3-4 hours (parent drug)
8-13 hours (active metabolite)
Excretion Renal: 30%
Biliary: 60%
Identifiers
CAS number 37517-30-9 Yes
ATC code C07AB04
PubChem CID 1978
DrugBank DB01193
ChemSpider 1901 Yes
UNII 67P356D8GH Yes
KEGG D02338 Yes
ChEBI CHEBI:2379 Yes
ChEMBL CHEMBL642 Yes
Chemical data
Formula C18H28N2O4 
Mol. mass 336.426 g/mol
Physical data
Melt. point 121 °C (250 °F)

Application

  • antagonist of β-adrenergic
  • β-blocker

Classes of substances

  • Acetophenones
    • 1-aryloxy-3-amino-2-propanol
      • Butyric acid anilides

       

Synthesis pathway

Chemical structure for Acebutolol

File:Acebutolol synthesis 01.svg

Synthesis a)


Trade Names

Country Trade name Manufacturer
Germany Printemps Bayer
Sali-Printemps – “-
Tredalat – “-
France Sektral Sanofi-Aventis
United Kingdom Sekadreks Aventis
Sektral Aventis
Italy Atsekor SPA
AlOl SIT
Printemps Bayropharm
Sektral Rhône-Poulenc Rorer
Japan Atsetanol Sanofi-Aventis
Chugai
Sektral Organon
USA – “- Wyeth-Ayerst
Ukraine No No

Formulations

  • ampoule 25 mg;
  • Capsules 100 mg, 200 mg;
  • Tablets of 200 mg, 400 mg, 500 mg (as hydrochloride)

Pharmacology

Acebutolol is a cardioselective beta blocker with ISA (intrinsic sympathomimetic activity; see article on pindolol). It is therefore more suitable than non cardioselective beta blockers, if a patient with asthma or chronic obstructive pulmonary disease (COPD) needs treatment with a beta blocker. (For these reasons, it may be a beta-blocker of choice in inclusion in Polypill strategies). In doses lower than 800mg daily its constricting effects on the bronchial system and smooth muscle vessels are only 10% to 30% of those observed under propranolol treatment, but there is experimental evidence that the cardioselective properties diminish at doses of 800mg/day or more.

The drug has lipophilic properties, and therefore crosses the blood–brain barrier. Acebutolol has no negative impact on serum lipids (cholesterol and triglycerides). No HDL decrease has been observed. In this regard, it is unlike many other beta blockers which have this unfavourable property.

The drug works in hypertensive patients with high, normal, or low renin plasma concentrations, although acebutolol may be more efficient in patients with high or normal renin plasma concentrations. In clinically relevant concentrations, a membrane-stabilizing effect does not appear to play an important role.

Pharmacokinetics

Acebutolol is well absorbed from the GI tract, but undergoes substantial first-pass-metabolization, leading to a bioavailability of only 35% to 50%. Peak plasma levels of acebutolol are reached within 2 to 2.5 hours after oral dosing. Peak levels of the main active metabolite, diacetolol, are reached after 4 hours. Acebutolol has a half-life of 3 to 4 hours, and diacetolol a half-life of 8 to 13 hours.

Acebutolol undergoes extensive hepatic metabolization resulting in the desbutyl amine acetolol which is readily converted into diacetolol. Diacetolol is as active as acebutolol (equipotency) and appears to have the same pharmacologic profile. Geriatric patients tend to have higher peak plasma levels of both acebutolol and diacetolol and a slightly prolonged excretion. Excretion is substantially prolonged in patients with renal impairment, and so a dose reduction may be needed. Liver cirrhosis does not seem to alter the pharmacokinetic profile of the parent drug and metabolite.

Indications

Contraindications

  • Stable or Unstable Angina (due to its partial agonist or ISA activity)

Contraindications and Precautions

Further information: Propranolol

Acebutolol may not be suitable in patients with Asthma bronchiale or COPD due to its bronchoconstricting (β2 antagonistic) effects.

Side effects

Further information: Propranolol

The development of anti-nuclear antibodies (ANA) has been found in 10 to 30% of patients under treatment with acebutolol. A systemic disease with arthralgic pain and myalgias has been observed in 1%. A lupus erythematosus-like syndrome with skin rash and multiforme organ involvement is even less frequent. The incidence of both ANA and symptomatic disease under acebutolol is higher than under Propranolol. Female patients are more likely to develop these symptoms than male patients. Some few cases of hepatotoxicity with increased liver enzymes (ALTAST) have been seen. Altogether, 5 to 6% of all patients treated have to discontinue acebutolol due to intolerable side effects. When possible, the treatment should be discontinued gradually in order to avoid a withdrawal syndrome with increased frequency of angina and even precipitation of myocardial infarction.

Dosage

The daily dose is 200mg – 1,200mg in a single dose or in 2 divided doses as dictated by the severity of the condition to be treated. Treatment should be initiated with low doses, and the dose should be increased cautiously according to the response of the patient. Acebutolol is particularly suitable for antihypertensive combination treatment with diuretics, if acebutolol alone proves insufficient. In some countries injectable forms for i.v.-injection with 25mg acebutolol exist, but these are only for cases of emergency under strict clinical monitoring. The initial dose is 12.5 to 25mg, but additional doses may be increased to 75 to 100mg, if needed. If further treatment is required, it should be oral.

 

Sectral (acebutolol HCl) structural formula illustration

Sectral (acebutolol HCl) is a selective, hydrophilic beta-adrenoreceptor blocking agent with mild intrinsic sympathomimetic activity for use in treating patients with hypertension and ventricular arrhythmias. It is marketed incapsule form for oral administration. Sectral (acebutolol) capsules are provided in two dosage strengths which contain 200 or 400 mg of acebutolol as the hydrochloride salt. The inactive ingredients present are D&C Red 22, FD&C Blue 1, FD&C Yellow 6, gelatin, povidone, starch, stearic acid, and titanium dioxide. The 200 mg dosage strength also contains D&C Red 28 and the 400 mg dosage strength also contains FD&C Red 40. Acebutolol HCl has the following structural formula:

View Enlarged Table
Acebutolol HCl is a white or slightly off-white powder freely soluble in water, and less soluble in alcohol. Chemically it is defined as the hydrochloride salt of (±)N-[3-Acetyl-4-[2- hydroxy-3-[(1-methylethyl)amino]propoxy]phenyl] butanamide.

 

 

External links

US3857952
EXAMPLE 5 5-Butyramido-2-(2-hydroxy-3-isopropylaminopropoxy)acetophenone (3.36 g.; prepared as described in Example (4) was dissolved in anhydrous methanol (50 ml.), and anhydrous diethyl ether (200 ml.) added. A saturated solution of anhydrous hydrogen chloride in anhydrous diethyl ether (25 ml.) was added dropwise with stirring. An oil was precipitated, which crystallized on further stirring. The solid was filtered off and recrystallized from a mixture of anhydrous methanol and anhydrous diethyl ether to give 5-butyramido-2′-(2- hydroxy-3-isopropyl’amino-propoxy)acetophenone hydrochloride (2.5 g.), m.p. l4ll43C.

EXAMPLE 4 Crude 5-butyramido-2′-(2,3-epoxypropoxy)acetophenone (16 g), isopropylamine (20 g.) and ethanol (100 ml.) were heated together under reflux for 4 hours. The reaction mixture was concentrated under reduced pressure and theresidual oil was dissolved in N hydrochloric acid. The acid solution was extracted with ethyl acetate, theethyl acetate layers being discarded. The acidic solution was brought to pH 11 with 2N aqueous sodium hydroxide solution and then extracted with chloroform. The dried chloroform extracts were concentrated under reduced pressure to give an oil which was crystallised from a mixture of ethanol and diethyl ether to give 5′-butyramido-2- (2-hydroxy-3-isopropylaminopropoxy)acetophenone (3 g.), m.p. 119l23C.

Similarly prepared was cyclohexylamino-2-hydroxypropoxy)acetophenone, m.p. 112113C.

Crude 5-butyramido-2-(2,3-epoxypropoxy)acetophenone used as startingmaterial was prepared as follows:

p-Butyramidophenol (58 g.; prepared according to Fierz-David and Kuster, loc.cit.), acetyl chloride (25.4 g.) and benzene (500 ml.) were heated together under reflux until a solution formed (12 hours). This solution was cooled and treated with water. The benzene layer was separated and the aqueous layer was again extracted with benzene.

The combined benzene extracts were dried and evaporated to dryness under reduced pressure to give pbutyramidophenyl acetate (38 g.) as an off-white solid, mp. 102-l03C. A mixture of p-butyramidophenyl acetate (38 g.), aluminium chloride (80 g.) and 1,l,2,2-tetrachloroethane (250 ml.) was heated at 140C. for 3 hours. The reaction mixture was cooled and treated with iced water. The tetrachloroethane layer was separated and the aqueous layer was extracted with chloroform. The combined organic layers were extracted with 2N aqueous sodium hydroxide and the alkaline solution was acidified to pH 5 with concentrated hydrochloric acid. The acidified solution was extracted with chloroform and the chloroform extract was dried and concentrated under reduced pressure to give 5′-butyramido-2-hydroxyacetophenone 15.6 g.), m.p. 114l17C. A solution of 5-butyramido-2′- hydroxyacetophenone (15.6 g.) in ethanol (100 ml.) was added to an ethanolic solution of sodium ethoxide which was prepared from sodium (1.62 g.) and ethanol (100 ml.). The resulting solution’was evaporated to dryness under reduced pressure and dimethylformamide (100 ml.) was added to the solid’residue. Ap-

proximately ml. of dimethylformamide was removed by distillation under reduced pressure. Epichlorohydrin ml.) was added and the solution was heated at 100C. for 4 hours. The solution was concentrated under reduced pressure to give a residual oil which was treated with water to’give a solid. The solid was dissolved in ethanol and the resulting solution was treated with charcoal, filtered and concentrated under reduced pressure to give crude 5-butyramido- 2-(2,3-epoxypropoxy)acetophenone (16 g.), m.p. 1101 16C.

The crude compound may be purified by recrystallisation from ethyl acetate, after, treatment with decolourizing charcoal, to give pure 5′-butyramido-2′-(2,3- epoxypropoxy)acetophenone, m.p. 136138C.

Links

  • GB 1247384 (May & Baker; appl. 22.12.1967).
  • DAS 1,815,808 (May & Baker; appl. 19.12.1968; GB -prior. 22.12.1967, 5/14/1968, 2.8.1968).
  • US 3,726,919 (May & Baker; 10/4/1973; GB -prior. 22.12.1967, 05.14.1968, 2.8.1968).
  • US 3,857,952 (May & Baker; 31.12.1974; GB -prior. 22.12.1967, 14.05.1968, 2.8.1968).
Literature References:
Cardioselective b-adrenergic blocker. Prepn: K. R. H. Wooldridge, B. Basil, ZA 6808345eidem, US3857952 (1969, 1974 both to May & Baker).
Pharmacology: Cuthbert, Owusu-Ankomah, Br. J. Pharmacol. 43, 639 (1971); Basil et al., ibid. 48, 198 (1973); Lewis et al., Br. Heart J. 35, 743 (1973).
HPLC determn in plasma and urine: M. Piquette-Miller et al., J. Chromatogr. 526, 129 (1990).
Crystal structure: A. Carpy et al., Acta Crystallogr. B35, 185 (1979).
Review of pharmacology and therapeutic efficacy: B. N. Singh et al., Drugs 29, 531-569 (1985); G. DeBono et al., Am. Heart J. 109, 1211-1223 (1985).
Comprehensive description: R. T. Foster, R. A. Carr, Anal. Profiles Drug Subs. 19, 1-26 (1990).
Keywords: Adrenergic Blocker,  Antianginal,  Antiarrhythmic, Antihypertensive, Aryloxypropanolamine Derivatives, Acebutolol, β-adrenergic receptor

 

Share

21′α-Cyanoanhydrovinblastine

 Uncategorized  Comments Off on 21′α-Cyanoanhydrovinblastine
Sep 052014
 

Some derivatives ) are known as being intermediates in the preparation of anti-tumor medicaments such as vinblastine, vincristine and vinorelbine.

R=CH3, vinblastine

R=CHO, vincristine

n=2, anhydrovinblastine

n=1, vinorelbine

The remarkable anti-tumor properties of these complex natural molecules, extracted from the Madagascar periwinkle, Carantheus roseus, are known and they are already used in anti-cancer treatment. Vinblastine and vincristine are “spindle poisons” which oppose the formation of the mitotic spindle during cellular division, thus preventing cellular proliferation.

Vincristine and vinblastine are active agents in the treatment of leukemia, lymphosarcoma and solid tumors. Vinblastine is also used in the treatment of Hodgkin’s disease.

Vinorelbine is currently used in the treatment of the most widespread form of cancer of the lungs, that is lung cancer of non-small cells. It is also used in the treatment of metastasic cancers of the breast.

The methods currently used for preparing vinblastine and vincristine involve extraction of these molecules from plants. The plants have to be crushed and dried before these substances can be extracted. The extraction process is long and costly, given that the extract obtained is very complex, containing at least 200 different alkaloids. The yields are also very low; 5 to 10 g of vinoblastine are obtained per ton of dried plant material, and 0.5 to 1 g of vincristine per ton of dried plant material.

Many research groups have thus tried to achieve synthesis of these molecules by using more efficient procedures which enable better yields and which make use of derivatives with interesting anti-tumor properties but which are endowed with lower levels of toxicity.

 

just an animation

The patent FI 882 755, filed by the HUATAN-MAKI Oy Company, relates to the formation of vinblastine and vincristine by irradiation of catharanthine and of vindoline with UV radiation in an acidic aqueous solution, under an atmosphere of oxygen or an inert gas. The yields obtained in these reactions are extremely low.

Furthermore, other processes are known which make use of anhydrovinblastine which is an intermediate in the synthesis of vinblastine, vincristine and also of vinorelbine.

Anhydrovinblastine is thus a key chemical intermediate which enables access to all alkaloids of the vinblastine type. This intermediate is synthesised by coupling catharanthine and vindoline.

The latter two alkaloids are also extracted from the Madagascar periwinkle but, in contrast to vincristine and vinblastine, they represent the main constituents of the extract obtained. In fact, 400 g of catharanthine per ton of dried plant material and 800 g of vindoline per ton of dried plant material are obtained.

The preparation of anhydrovinblastine by coupling catharanthine and vindoline is therefore a favoured route for synthesising this intermediate product.

There are several methods for preparing anhydrovinblastine from catharanthine and vindoline.

The patent FR 2 296 418 filed by ANVAR describes a process during the course of which the N-oxide of catharanthine is coupled to vindoline in the presence of trifluoroacetic anhydride.

When this process is performed at ambient temperature only the inactive 16′-R epimer of anhydrovinblastine is obtained. The naturally occurring active 16′-S epimer is obtained as the major product when this reaction is performed at a temperature which is at least 50° C. lower and under an inert gas. Nevertheless, even at low temperature, 10% of the 16′-R epimer of anhydrovinblastine is still produced.

 

 

This process has several disadvantages. The operating conditions are extremely restrictive due to the use of anhydrous solvents, the low temperature and the atmosphere of inert gas. The product obtained has to be subjected to a purification procedure due to the presence of 10% of the 16′-R epimer of anhydrovinblastine. The yield of isolated anhydrovinblastine is low, of the order of 35%.

A second process, suggested by VUKOVIC et al. in the review “Tetrahedron” (1998, volume 44, pages 325-331) describes a coupling reaction between catharanthine and vindoline initiated by ferric ions. Catharanthine is also oxidised in this reaction. The yield of anhydrovinblastine is of the order of 69% when the reaction is performed under an atmosphere of inert gas. However, this process has the major disadvantage that it leads to many secondary products. These are impurities resulting from further oxidation of the dimeric alkaloids formed, whatever the chosen operating conditions. This makes the purification stage difficult and delicate.

An improved process was suggested in the patent U.S. Pat. No. 5,037,977 and this increases the yield of anhydrovinblastine to 89%. However, this improvement is described only for very small amounts of reagents and its extension to the industrial scale seems to be difficult. In any case, these processes based on ferric ions lead in all cases to many secondary products due to the fact that these ions are responsible for parasitic reactions.

A third process described by GUNIC et al. in “Journal of the Chemical Society Chemical Communications” (1993), volume 19, pages 1496-1497, and by Tabakovic et al. in “Journal of Organic Chemistry” (1997), volume 62, pages 947-953, describes a coupling reaction between catharanthine and vindoline as a result of anodic oxidation of catharanthine. However, this process also suffers from disadvantages which, on the one hand, are due to the requirement for an inert atmosphere and, on the other hand, are connected with the nature of the electrochemical process itself, involving wear of the electrodes, difficulty in controlling the reproducibility and the cost of electrolytes. And, as in all the preceding methods, the anhydrovinblastine is contaminated with about 10% of the 16′-R epimer of anhydrovinblastine.

http://www.google.com/patents/US6365735

EXAMPLE 11 Preparation of 21′α-Cyanoanhydrovinblastine

0.537 mmol of catharanthine hydrochloride (200 mg), 0.537 mmol of vindoline (245 mg) and 0.054 mmol of dimethyl viologen (14 mg) and 0.028 mmol of triphenylpyrilium hydrogen sulfate (11 mg) are added to 50 ml of 0.1 N sulfuric acid. The entire mixture is irradiated with light of wavelength λ>400 nm in a Pyrex irradiation flask, under an atmosphere of oxygen. The reaction is terminated after 2 h 30 min of irradiation.

The aqueous phase is then saturated with lithium tetrafluoroborate and then extracted with dichloromethane. A solution of 15 ml of dichloromethane containing 100 μl (1.34 mmol, 2 eq.) of trimethylsilyl cyanide, TMSCN, is then added to the reaction medium. The organic phase is washed with a solution of 0.1 M sodium carbonate, dried and evaporated under reduced pressure at 20° C.

 

 

 

The only product in the residue (403 mg, 0.509 mmol, 95%) is recrystallised from absolute isopropanol. 340 mg of white crystals of 21′α-cyanoanhydrovinblastine (0.430 mmol; yield: 80%) are recovered.

C47H55N5O8

M.pt. 212° C. (iPrOH) IR film 3450, 2950, 2220, 1740, 1610 cm−1; MS M/z (relative intensity) 818 (MH+, 3), 122 (100), 108 (21);

NMR 1H (500 MHz, CDCl3) 9.78 (s, 1H, OH), 8.04 (s, 1H, Na′H), 7.51 (1H, H-9′), 7.16 (1H, H-11′), 7.13 (1H, H-12′), 7.12 (1H, H-10′), 6.63 (s, 1H, H-9), 6.13 (s, 1H, H-12), 5.85 (m, 1H, H-14), 5.47 (s, 1H, Hα-17), 5.54 (m, 1H, H-15′), 5.30 (m 1H, H-15), 4.18 (1H, H62-2), 3.60 (s, 3H, C16′—COOCH3), 3.38 (1H, H62-3), 3.35 (1H, Hβ-3′), 3.31 (1H, Hβ-5), 3.25 (1H, Hβ-6′), 3.24 (m, 1H, Hβ-5′), 3.15 (1H, Hβ-17′), 3.14 (m, 1H, Hα-5′), 3.12 (1H, Hα-6′), 2.82 (1H, Hα-3), 2.72 (s, 3H, NaCH3), 2.66 (s, 1H, Hα-21), 2.62 (1H, Hα-3′), 2.46 (1H, Hα-5), 2.40 (1H, Hα-17′), 2.20 (1H, Hβ-5), 2.11 (s, 3H, CH3—COO), 2.11 (1H, H-19′), 2.03 (1H, H-19′), 1.80 (1H, Hα-6), 1.80 (1H, H-19), 1.35 (1H, H-19), 1.21 (m, 1H, H-14′), 1.04 (3H, H-18′), 0.81 (3H, H-18).

NMR 13C (125 MHz, CDCl3) 174.69 (C16′COOCH3), 171.74 (C16COOCH3), 171.03130.01 (C15), 129.34 (C8′), 129.16 (C15′), 124.63 (C14), 123.48 (C9), 123.24 (C8), 122.49 (C11′), 121.00 (C10), 119.21 (C10′), 119.21 (CN), 118.35 (C9′), 115.65 (C7′), 110.64 (C11—OCH3), 55.40 (C16′), 53.30 (C7), 52.46 (C16′—COOCH3), 52.30 (C16—COOCH3), 52.26 (C5′), 50.50 (C5), 50.41 (C5), 44.86 (C6), 44.48 (C3′), 42.76 (C20), 38.32 (Na—CH3), 34.00 (C17′), 33.28 (C14′), 30.92 (C19), 28.63 (C8′), 25.92 (C19′), 21.19 (CH3—COO), 11.86 (C18′), 8.50 (C18).

Patent Citations
Cited Patent Filing date Publication date Applicant Title
US4737586 Apr 29, 1986 Apr 12, 1988 Agence Nationale De Valorisation De La Recherche Process for the preparation of bis-indolic compounds
US5037977 Aug 8, 1989 Aug 6, 1991 Mitsui Petrochemical Industries Ltd. Reacting catharanthine with vindoline in presence of ferric ions, inactivating iron with ligand, reducing
DE3801450A1 Jan 20, 1988 Aug 18, 1988 Univ British Columbia Verfahren fuer die synthese von vinblastin und vincristin
DE3826412A1 Aug 3, 1988 Feb 16, 1989 Univ British Columbia Verfahren fuer die synthese von vinblastin und vincristin
WO1989012056A1 Jun 9, 1989 Dec 14, 1989 Huhtamaeki Oy Process for the preparation of dimeric catharanthus alkaloids
Non-Patent Citations
Reference
1 E. Gunic et al., “Electrochemical Synthesis of Anhydrovinblastine“, J. Chem. Soc., Chem. Commun., 1993, pp. 1496-1497.
2 I. Tabakovic et al., “Anodic Fragmentation of Catharanthine and Coupling with Vindoline. Formation of Anhydrovinblastine“, J. Org. Chem., 1997, vol. 62, pp 947-953.
3 J. Vucovik et al., “Production of 3′,4′-anhydrovinblastine: a Unique Chemical Synthesis“, Pergamon Journals Ltd., 1988, vol. 44, pp. 325-331.
4 Richard J. Sundberg et al.; “Mechanistic aspects of the formation of anhydrovinblastine by Potier-Polonovski oxidative coupling of catharanthine and vindoline. Spectroscopic observation and chemical reactions of intermediates” Tetrahedron., vol. 48, No. 2,-Jan. 10, 1992; pp. 277-296, XP002083507 Oxford GB-the whole document.
5 Richard J. Sundberg et al.; “Oxidative fragmentation of catharanthine by dichlorodicyanoquinone“; Journal of Organic Chemistry,-Mar. 1, 1991; pp. 1689-1692, XP002083508 Easton US -the whole document.
6 Richard J. Sundberg et al.; “Photoactivated C16-C21 fragmentation of catharanthine” Tetrahedron Letters, vol. 32, No. 26, Jun. 24, 1992, pp. 3035-3038 XP002083509 Oxford GB-the whole document.
7 Richard J. Sundberg et al.; “Mechanistic aspects of the formation of anhydrovinblastine by Potier-Polonovski oxidative coupling of catharanthine and vindoline. Spectroscopic observation and chemical reactions of intermediates” Tetrahedron., vol. 48, No. 2,—Jan. 10, 1992; pp. 277-296, XP002083507 Oxford GB—the whole document.
8 Richard J. Sundberg et al.; “Oxidative fragmentation of catharanthine by dichlorodicyanoquinone“; Journal of Organic Chemistry,—Mar. 1, 1991; pp. 1689-1692, XP002083508 Easton US —the whole document.
9 Richard J. Sundberg et al.; “Photoactivated C16-C21 fragmentation of catharanthine” Tetrahedron Letters, vol. 32, No. 26, Jun. 24, 1992, pp. 3035-3038 XP002083509 Oxford GB—the whole document.
Citing Patent Filing date Publication date Applicant Title
US7235564 * Dec 3, 2004 Jun 26, 2007 Amr Technology, Inc. 11′-substituted; potent inhibitors of cellular mitosis and proliferation
US7238704 * Dec 3, 2004 Jul 3, 2007 Amr Technology, Inc. For use as inhibitors of cellular mitosis and proliferation
US7745619 Oct 31, 2007 Jun 29, 2010 Albany Molecular Research, Inc. alkaloids; anticarcinogenic, antiproliferative agent; inhibitor of cellular mitosis and cell proliferation; binding to tubulin leads to cell cycle arrest in M phase and subsequently to apoptosis; antiallergen, antiinflammatory, antidiabetic, autoimmune diseases; asthma, arthritis, Alzheimer’ disease
US7842802 Dec 10, 2008 Nov 30, 2010 Albany Molecular Research, Inc. Vinorelbine derivatives
US8048872 Apr 29, 2008 Nov 1, 2011 Stat of Oregon Acting by and Through The Oregon State Board of Higher Education on Behalf of the University of Oregon Treatment of hyperproliferative diseases with vinca alkaloid N-oxide and analogs
US8053428 Apr 6, 2007 Nov 8, 2011 Albany Molecular Research, Inc. Vinorelbine derivatives
WO2005055939A2 * Dec 3, 2004 Jun 23, 2005 Amr Technology Inc Vinca derivatives

 

 

Share

AMRI Introduces Protein Expression & Purification Solutions

 Uncategorized  Comments Off on AMRI Introduces Protein Expression & Purification Solutions
Sep 052014
 

 

 

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR5DW-rAfgA3NSOdcdlSQf1aq2Ov4-z_jkRRHmqdsvN-RFRlccRWw

A MESSAGE FROM MICHAEL A. LUTHER, SENIOR VICE PRESIDENT DISCOVERY AND DEVELOPMENT
Dear Anthony,As a company with a deep history of discovery innovation, Albany Molecular Research Inc. (AMRI) continues to explore scientific solutions that provide our customers with enhanced flexibility and access to state-of-the-art science and technologies. As part of our aim to provide you with high-value services in the area of biology and pharmacology, today we announced new platforms that enhance our discovery biology offerings.One of our new platforms comprises IND-enabling support services, which are aimed at supporting the successful initiation and completion of customer Investigational New Drug (IND) programs. As part of this offering we now provide in vitro DMPK studies, related to drug-drug interactions and metabolism, which are routinely included in IND submissions. Our Drug Metabolism and Pharmacokinetics (DMPK) group provides in vitro DMPK and bioanalytical/PK services as part of our Drug Discovery and Development Solutions (DDS) business. These services span all stages of drug discovery including exploratory, hit-to-lead, lead optimization and candidate selection, as well as the pre-clinical IND-enabling stage.

More recently, we have expanded into the protein market with an initial focus on protein expression and purification. As part of a public-private pharmaceutical research and development initiative in Buffalo, N.Y., our current and ongoing activities encompass the production of purified recombinant proteins as reagents and tools for biological assays and sterile, pyrogen-free materials for proof-of-concept, non-human in vivo studies. We are very excited to be able to offer these expanded biology services as we continue to seek innovative ways to provide relevant drug discovery services and expertise to academia and the global Bio-Pharmaceutical industry from early discovery to candidate selection and beyond.

Our goal is to leverage our deep expertise to provide you with high quality and innovative scientific solutions that drive your pipeline and portfolio. As always, if you have questions about any of the services we can provide, please contact us to request a quote so we can discuss your needs.

Sincerely,

Michael A. Luther, Ph.D., MBA
Senior Vice President, Discovery and Development
Albany Molecular Research Inc. (AMRI)
Albany Molecular Research Inc. (AMRI)
26 Corporate Circle
Albany, NY 12203

 

 

 

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: